

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

description: Welcome to College of Charleston’s High Performance Computing Initiatives

Introduction

About HPC at CofC

High performance computing (HPC) at College of Charleston has historically been under the purview of the Department of Computer Science. It is now under the Division of Information Technology with the aim of delivering a research computing environment and support for the whole campus. We especially thank the following groups for making HPC at CofC possible.

	Office of the President [http://president.cofc.edu/about/index.php]

	Division of Information Technology [http://it.cofc.edu]

	School of Sciences and Mathematics [http://ssm.cofc.edu]

HPC Cluster Specs in Brief

We recently purchased a new Linux cluster that has been in full operation since late April 2019. Faculty and staff can request accounts by emailing hpc@cofc.edu or filling out a service request [https://cofc.teamdynamix.com/TDClient/Requests/ServiceDet?ID=35085]. Students are eligible for accounts upon endorsement or sponsorship by their faculty/staff mentor.

The HPC is a commodity Linux cluster containing many compute, storage and networking equipment all assembled into a standard rack. It is largely accessed remotely via SSH although some applications can be accessed using web interfaces and remote desktop tools.

[image: _images/hpc-cluster-schematic.png] HPC system schematic

The cluster uses the OpenHPC [https://openhpc.community/] software stack.

[image: _images/openhpc-logo-small.png]https://openhpc.community/

The specs for the cluster are provided below.

	Compute nodes

	10 standard compute nodes:

	2x 20-core 2.4GHz Intel Xeon Gold 6148 CPUs w/ 27MB L3 cache,

	192GB of DDR4 2667MHz RAM,

	1x 480GB of local SSD storage,

	Double precision performance ~ 2.8 TFLOPs/node

	1 large memory node:

	4x 20-core 2.4GHz Intel Xeon Gold 6148 CPUs w/ 27MB L3 cache,

	1536GB of DDR4 2667MHz RAM,

	2x 480GB of local SSD storage,

	Double precision performance ~ 5.6 TFLOPs/node

	2 GPU-containing nodes:

	2x 12-core 2.6GHz Intel Xeon Gold 6126 CPUs w/ 19MB L3 cache,

	192GB of DDR4 2667MHz RAM,

	480GB of local SSD storage,

	1 NVIDIA Tesla V100 16GB GPU

	Double precision performance ~ 1.8 + 7.0 = 8.8 TFLOPs/node

	Login/visualization node

	1 login and visualization node:

	2x 12-core 2.6GHz Intel Xeon Gold 6126 CPUs w/ 27MB L3 cache,

	192GB of DDR4 2667MHz RAM,

	3TB of local apps storage,

	1x NVIDIA Quadro P4000 8GB GPU

	Storage

	512TB NFS-shared, global, highly-available storage

	38TB NFS-shared, global fast NVMe-SSD-based scratch storage

	300-600GB local SSDs in each compute node for local scratch storage

	Interconnect [http://www.mellanox.com/page/products_dyn?product_family=192&mtag=sb7700_sb7790]

	Mellanox EDR Infiniband with 100Gb/s bandwidth

	Software stack

	OpenHPC 1.3.6

	CentOS 7.6

	Warewulf provisioning

	SLURM scheduler

	LMod modules for package management

	Workflow tools

In total, the cluster has a theoretical peak performance of 51 trillion floating point operations per second (TeraFLOPS). We will provide benchmarks based on standard High Performance LINPACK (HPL) at some point.

Support and Facilitation

If you need any help, please follow any of the following channels.

	Submit a support ticket through TeamDynamix [https://cofc.teamdynamix.com]

	Service requests [https://cofc.teamdynamix.com/TDClient/Requests/ServiceDet?ID=35085]. These include inquiries about accounts, projects and services

	Request account

	Seek consultation about teaching/research projects

	Inquire about operations

	Ask about documentation

	Incident requests [https://cofc.teamdynamix.com/TDClient/Requests/ServiceDet?ID=35086]. These include any problems you encounter during any HPC operations

	Inability to access the cluster or individual nodes

	Inability to run calculations

	Inability to access data

	If TeamDynamix is inaccessible, please email HPC support directly or

	Email the campus helpdesk or

	Call the campus helpdesk at 853-953-3375 during these hours

	Mon - Fri 7:30 AM - 10:00 PM

	Sat - Sun 2:00 PM - 10:00 PM

	Stop by Bell Building, Room 520 during normal work hours (M-F, 8AM-5PM)

We recognize that there are a lot of hurdles that keep people from using HPC resources. We have experience facilitating research computing for experts and new users alike. So, please feel free to contact us and we will work to get you started.

Acknowledgements for this Guide

Big thanks to Wendi Sapp (Oak Ridge National Lab (ORNL) CADES [https://cades.ornl.gov/], Sustainable Horizons Institute [http://shinstitute.org/wendi-sapp-3/], USD Research Computing Group [http://rcg.usd.edu]) and the team at ORNL for sharing the template for this documentation with the HPC community. You can find Wendi’s original documentation on GitHub [https://github.com/wendikristine/documentation-template]

Table of contents

	Introduction

	Policies

	Acknowledgement

	FAQs & Tips

	System News and Updates

Overview

	Hardware

	Storage

	Software

Using the HPC

	Quickstart Guide

	Request an Account

	Access your Account

	CLI - an SSH terminal

	GUI - remote desktop

	Customize Environment

	Transfer Data

	Access Software

	Software List

	Schedule Jobs using SLURM

	Run Calculations

	MPI Example

	C++

	Fortran

	Python

	Makefiles

	JupyterHub

	Jupyter Notebooks

	WebMO

	Examples @GitHub

	AMBER

	CM1

	GAMESS

	Gaussian

	GPUs (cuda)

	NAMD

	Mathematica

	Matlab

	Orca

	Psi4

	Visualize Data

Products

	Publications

	Grants

	Research Profiles

Learning Linux

	Overview

	Essential Commands

	Managing Files

	File Permissions

	Create Files

	Bash Scripting

	Environment Customization

	Script: Backup

	Script: Seconds

	Working with Processes

	Know Your System

	System Configuration

	Services

	Communication Protocols

	Task Manager (crontab, at)

	Help - man/tl;dr

Misc

	Git Version Control

	Git and Atom: GitLab

	Git and Atom: GitHub

	Git in the Command Line

	Git Scenarios

	Contributing to docs

	Markdown Guide

	Glossary

	License

	Support

Acknowledgement

In your publications and presentations, please acknowledge the role that CofC’s HPC resources have played in your research and teaching. We appreciate your conscientiousness in this matter. This information helps

	communicate the role HPC plays on campus teaching and research

	encourage more faculty, students and staff to incorporate HPC into their teaching and research

	justify CofC’s investment in HPC

	ensure continued funding and support to keep HPC resources available and growing in the future

Reporting Success Stories

Please alert our IT communications department or HPC team about papers and presentations that utilized CofC’s HPC resources and personnel. Some of these success stories will be highlighted in IT’s communication as well as other campus publications.

Publications, Presentations, and Other Products

Any publications, presentations, websites, patents and other products resulting from work done on CofC HPC machines should include the following citation:

“Computation for the work described in this product was supported by the College of Charleston’s High Performance Computing (HPC) resources (https://hpc.cofc.edu).”

Copies of published papers acknowledging HPC should be submitted for inclusion on the HPC project website, under the publications page as well as the CofC Research and Grants Administration Office [http://research.cofc.edu/administration/index.php]. Be sure to include complete publication information (i.e, a URL, PDF, or PS file of the actual publication) and indicate if there are any restrictions on publication.

Grants and Funding

If you are submitting proposals for grant funding with a computational component that can take advantage of our HPC resources, please contact our Research and Grants Administration Office personnel [http://research.cofc.edu/administration/contact-orga-staff/index.php] and our HPC team to discuss ways in which

	you can use our HPC resources in your research

	the presence of HPC resources can strengthen your proposals

	you can request funding to add to our HPC resources

If your project is supported by grants or other funding, this information should be included on the HPC project website under the grants page. This will be used internally to provide a better idea of how CofC researchers are making use of the HPC for funded projects.

description: Frequently Asked Questions and Helpful Tips

FAQs & Tips

FAQs

System Details

What are the system’s hardware specs?

The new cluster is composed of

	10 standard memory compute nodes each with 2x 20-core 2.4GHz Intel Xeon Skylake CPUs, 192GB of memory and 480GB of local storage,

	1 large memory compute node with 4x 20-core 2.4GHz Intel Xeon Skylake CPUs, 1.5TB of memory and 960GB of local storage,

	2 GPU-containing nodes each with 2x 12-core 2.6GHz Intel Xeon Skylake CPUs, 1 NVIDIA Tesla V100 GPU, 192GB of RAM and 480GB local storage,

	1 login and visualization node with 2x 12-core 24 2.4GHz Intel Xeon Skylake CPUs, 1 NVIDIA Quadro P4000 GPU, 192GB of RAM and 480GB local storage,

	512TB globally-shared long-term storage,

	38TB globally-shared NVMe SSD-based fast scratch storage,

	All interconnected with 100Gbps Mellanox EDR InfiniBand fabric

You can learn more about the hardware here

What kind of software stack is running on the cluster?

It runs an OpenHPC software stack composed of CentOS 7.6 with WareWulf for management and provisioning, and SLURM as the scheduler. It has all the necessary general as well as subject-specific software libraries and compilers to ensure that users’ software compiles and runs optimally on the cluster. You can learn more about the software on the cluster here

Accounts

Who is eligible to use the HPC cluster?

All CofC faculty, staff and students are eligible to use the cluster for educational or research purposes. Students need the endorsement or sponsorship of their faculty advisor or mentor. All users have to agree to the terms outlined in the policies page before getting an account on the cluster.

How does one go about getting an account to use the HPC cluster?

	Faculty and staff can request accounts by filling out a form electronically or emailing their request to hpc@cofc.edu.

	Students are eligible for accounts upon endorsement or sponsorship by their faculty/staff mentor/advisor. Their faculty/staff mentor/advisor can send an email request to hpc@cofc.edu on their behalf to initiate the account creation process.

	Instructions about applying for accounts can be found here

Access

How do I access the cluster?

Most user will access the cluster via SSH. If you are on campus, the HPC cluster is accessible directly via SSH from the CofC campus wired and ‘eduroam’ wireless network.

If you are off-campus, you would need to use CofC’s VPN to access the HPC resource. If you have never used CofC’s HPC resources before, you would need to submit a VPN access request even if you have used CofC’s VPN to access other campus resources. Instructions on access can be found here

If I am not comfortable with a command-line interface (CLI), how can I use the cluster?

While a CLI is essential to making full use of the cluster, we do plan to provide other ways to use the cluster though a graphical user interface (GUI). For example, chemists can run calculations using WebMO [https://hpc.cofc.edu/webmo]. Users running Python or R will soon be able to use Jupyter Notebooks right from their web browsers.

Software

What kind of applications are available on the cluster?

The parallel software available on the cluster depends on the compiler and message passing library (MPI) you choose. The default GNU8 compiler and OpenMPI3 library chain provides the following applications:

------------------------------ /opt/ohpc/pub/moduledeps/gnu8-openmpi3 -------------------------------
 adios/1.13.1 mpiP/3.4.1 pnetcdf/1.11.0 scorep/4.1
 boost/1.69.0 mumps/5.1.2 ptscotch/6.0.6 sionlib/1.7.2
 dimemas/5.3.4 netcdf-cxx/4.3.0 py2-mpi4py/3.0.0 slepc/3.10.2
 extrae/3.5.2 netcdf-fortran/4.4.5 py2-scipy/1.2.1 superlu_dist/6.1.1
 fftw/3.3.8 netcdf/4.6.2 py3-mpi4py/3.0.0 tau/2.28
 hypre/2.15.1 opencoarrays/2.2.0 py3-scipy/1.2.1 trilinos/12.12.1
 imb/2018.1 petsc/3.10.3 scalapack/2.0.2
 mfem/3.4 phdf5/1.10.4 scalasca/2.4

----------------------------------- /opt/ohpc/pub/moduledeps/gnu8 -----------------------------------
 R/3.5.2 likwid/4.3.3 mvapich2/2.3 openmpi3/3.1.3 (L) py3-numpy/1.15.3
 hdf5/1.10.4 metis/5.1.0 ocr/1.0.1 pdtoolkit/3.25 superlu/5.2.1
 impi/2019.3.199 mpich/3.3 openblas/0.3.5 py2-numpy/1.15.3

------------------------------------- /opt/ohpc/pub/modulefiles -------------------------------------
 EasyBuild/3.7.1 cmake/3.12.2 papi/5.6.0
 autotools (L) cuda/9.2 pmix/2.1.4
 charliecloud/0.9.2 gnu7/7.3.0 prun/1.2 (L)
 chem/gamess/2018-R2 gnu8/8.3.0 (L) singularity/2.6.0
 chem/gaussian/16-B.01 hwloc/1.11.10 use.own
 chem/mopac/2016 intel/19.0.3.199 valgrind/3.13.0
 chem/orca/4.1.2 llvm5/5.0.1
 clustershell/1.8 ohpc (L)

Can users request applications to be installed?

Absolutely. We will add applications at users’ request. Please submit a TeamDynamix service request [https://cofc.teamdynamix.com/TDClient/Requests/ServiceDet?ID=35085] stating the application you need and any pertinent details and we will do our best to get the application available to you quickly.

Please note that some applications are trivial to install and test while others can be cumbersome. So, we can not guarantee a quick turn-around, but we will try to give you a reasonable timeline.

Can users install their own applications?

Yes, users are welcome to install their own applications in their $HOME directories and run them. If they do, here are some useful tips

	It is best to consistently stick with one compiler and MPI library if possible.

	To ease setting up the environment to run your own applications

	You can enter module load use.own to create a directory called privatemodules in your $HOME directory

	You can copy an example module file from /opt/ohpc/pub/examples/example.modulefile or /opt/ohpc/pub/examples/examplempi-dependent.modulefile and change it to match your application

Learning

What tools are available to learn about HPC?

HPC Carpentry [https://hpc-carpentry.github.io/] provides a robust introduction to high-performance computing. The Software Carpentry [https://software-carpentry.org/lessons/] project it is following has excellent lessons on the Unix shell, Python, R and Matlab.

Will there be workshops to help users learn about HPC?

Yes, we do plan to run workshops on campus. We also track online webinars and workshops in the area where users can expand their knowledge base.

Tips and Tricks

Access

How can I SSH to the HPC without having to enter my password every time?

Using SSH keys instead of conventional passwords is more convenient to users and more robust from a security standpoint. It requires you to

	Generate an private-public SSH key pair on your local computer and copy it to the HPC

	cd ~/.ssh/

	ssh-keygen -t rsa -b 4096

	Accept the ~/.ssh/ as the default location to store the keys

	Make sure you don’t overwrite existing SSH keys if you use those for some purpose.

	Enter a passphrase for an extra later of security, but leave it empty otherwise

	If everything is successful, you should have a public-private key pair (eg. id_rsa and id_rsa.pub in `~/.ssh`)

	Execute ls ~/.ssh/id_* to check that the keys exist

	Copy the public key to the remote computer (the HPC in this case)

	ssh-copy-id $HPC_USERNAME@hpc.cofc.edu

	You will be prompted to enter your HPC password

	Once the password is accepted, your public SSH key will be added to the file ~/.ssh/authorized_keys file on the HPC

	Test if it works

	On your local computer, try SSHing to the HPC

	ssh -Y $HPC_USERNAME@hpc.cofc.edu

	If your SSH key has a non-standard name (i.e. different from id_rsa) or location (i.e. different from ` ~/.ssh `), you may need to explicitly tell SSH to use a particular private SSH key

	ssh -Y -i ~/.ssh/id_rsa-mytest $HPC_USERNAME@hpc.cofc.edu

	Alternatively, you can open/create your SSH config file (~/.ssh/config) and add a section on handling your SSH communication with the HPC

	Host hpc.cofc.edu
 User <Your HPC USERNAME HERE>
 IdentityFile ~/.ssh/id_rsa-mytest

What’s the best way to make data on the HPC available on my local computer?

While we do not encourage this, it is possible to mount filesystems on the HPC on your local computer using SSHFS. You would need to have an SSHFS client installed on your local computer.

	Mac OS X users can install FUSE [https://osxfuse.github.io/].

	Windows users can install win-sshfs

	Linux users can install sshfs using their respective package managers

Once you have an SSHFS client installed, you can

	open a terminal on your local computer

	create a directory, for example /tmp/hpc

	`mkdir /tmp/hpc`

	mount the filesystem of interest using SSHFS. For example

	sshfs <USERNAME>@hpc.cofc.edu:/home/<USERNAME> /tmp/hpc

When you are finished, please make sure you unmount the remote filesystem. Otherwise, you will have stale NFS filesystem and you will run into trouble the next time you try to mount the same filesystem. This is the most common problem SSHFS users encounter.

Operations

It takes too long to get information about file/directory sizes and my storage usage. How can I get that information more quickly?

Most people use ``ls -lth``` or the disk usage (du) commands to get information about file and directory sizes. To get a more complete picture your disk usage, the ncurses based ncdu command is quicker and more informative.

$user@hpc:~/misc/molden| ls -ltn

total 25228
drwxr-x--- 2 5000 5001 10 Mar 8 11:29 apps
-rwxr-xr-x 1 5000 5001 4279704 Mar 8 11:26 gmolden5.8.gfortran.64
-rw-r----- 1 5000 5001 21545670 Mar 8 11:24 molden6.2.full.ubuntu.64.tar.gz
drwxr-x--- 4 5000 5001 4096 Jul 25 2019 molden

$user@hpc:~/misc/molden| du -sh *
0	apps
4.1M	gmolden5.8.gfortran.64
154M	molden
21M	molden6.2.full.ubuntu.64.tar.gz

$user@hpc:~/misc/molden| ncdu
--- /home/user/misc/molden -------------------------
 153.0 MiB [##########] /molden
 20.6 MiB [#] molden6.2.full.ubuntu.64.tar.gz
 4.1 MiB [] gmolden5.8.gfortran.64
e 0.0 B [] /apps

Learning

What is the easiest way to learn about a command and how to use it?

Of course, you can look at the man pages by entering man command, but a more user-friendly option is to enter tldr command which gives examples of the most common used of that command. As with man pages, there isn’t a TL;DR [https://tldr.sh/] entry for every command. If you feel like contributing to the TL;DR project, you can do so through their GitHub [https://github.com/tldr-pages/tldr] page.

For example, TLDR page for rsync looks like this:

$user@host:~| tldr rsync
rsync

 Transfer files either to or from a remote host (not between two remote hosts).
 Can transfer single files, or multiple files matching a pattern.

- Transfer file from local to remote host:

 rsync path/to/local_file remote_host:path/to/remote_directory

- Transfer file from remote host to local:

 rsync remote_host:path/to/remote_file path/to/local_directory

- Transfer file in [a]rchive (to preserve attributes) and compressed ([z]ipped) mode with [v]erbose and [h]uman-readable [p]rogress:

 rsync -azvhP path/to/local_file remote_host:path/to/remote_directory

- Transfer a directory and all its children from a remote to local:

 rsync -r remote_host:path/to/remote_directory path/to/local_directory

- Transfer directory contents (but not the directory itself) from a remote to local:

 rsync -r remote_host:path/to/remote_directory/ path/to/local_directory

- Transfer a directory [r]ecursively, in [a]rchive to preserve attributes, resolving contained soft[l]inks , and ignoring already transferred files [u]nless newer:

 rsync -rauL remote_host:path/to/remote_file path/to/local_directory

- Transfer file over SSH and delete local files that do not exist on remote host:

 rsync -e ssh --delete remote_host:path/to/remote_file path/to/local_file

- Transfer file over SSH and show global progress:

 rsync -e ssh --info=progress2 remote_host:path/to/remote_file path/to/local_file

Most Common Problems

Access

You can’t access the HPC or your connection times out

This is most likely because you are not on the CofC campus network, or using VPN if you are off campus. Please check to make sure

	if on campus, you are connected to the campus wired or wireless (Eduroam) network

	if off campus, you are using the CofC VPN. Please request VPN access to the HPC if you intend to access HPC from off-campus networks.

Policies

Users of the high-performance computing (HPC) system must abide by CofC’s IT policies [http://policy.cofc.edu/policy.php#it] as well those outlined below specifically for HPC. These HPC usage policies have been adapted from USC [https://hpcc.usc.edu/support/accounts/hpcc-policies/] and reflect standards practiced at most institutions.

Account Creation

	Faculty and staff can request accounts by emailing hpc@cofc.edu or filling out a service request [https://cofc.teamdynamix.com/TDClient/Requests/ServiceDet?ID=35085].

	Students are eligible for accounts upon endorsement or sponsorship by their faculty/staff mentor/advisor. Their faculty/staff mentor/advisor should send an email request to hpc@cofc.edu on their behalf to initiate the account creation process.

Account Security

Every user will have their own login credentials that they must guard with caution. Sharing of accounts and credentials is strictly forbidden. If a user is deemed to have shared their credentials, their account will be suspended immediately.

Account Lifecycle

	Faculty and staff accounts will remain active as long as they are at the CofC unless (1) they request that it be terminated or (2) the account is inactive for longer than two years.

	Students accounts will be deactivated whenever any one of these following criteria are met:

	The student graduates, OR

	The student’s faculty/staff mentor indicates that the student no longer needs access to the cluster, OR

	The student’s account remains inactive for longer than two years

Resource Management

Head Node Process Limit Policy

You are restricted to a small number of processes running in the login/head node because it hosts critical services and is shared with lots of other users simultaneously. Therefore, tasks on the head node are limited to processes that are not long or resource intensive such as file transfers, code compilation, simple pre- and post-processing that can not be performed on the compute nodes using the batch queueing system. Any violations of these rules will result in your processes being terminated, and your account being suspended or revoked upon repeated infractions.

Computing Resources Limit Policy

You may submit jobs that require up to 48 hours of processing time and 8 nodes to the standard default queue. If your jobs require more computing resources than the defined Linux resource limit, please send an email to hpc@cofc.edu.

	debugq - this queue shares two compute nodes with the stdmemq queue and it is intended for testing quick jobs before submitting production runs to the stdmemq queue. Run times in this queue are limited to 2 hours and 2 nodes.

	stdmemq - this is the default queue containing 10 compute nodes with 40 cores, 192GB of RAM and 300GB SSD storage each. Run times in this queue are limited to 48 hours unless you request an extension by emailing hpc@cofc.edu.

	bigmemq - this queue is intended to provide access to our large node which has 80 cores, 1.5TB of RAM and 600GB SSD. Run times in this queue are limited to 24 hours and 1 node.

	gpuq - this queue is intended to provide access to two nodes each with 1 NVIDIA Tesla V100 GPU, 24 cores, 192GB of RAM and 300GB SSD. Run times in this queue are limited to 48 hours and 1 node.

The HPC cluster is a shared computing resource. Jobs with a long wait or sleep loop jobs are not allowed on the cluster, as this wastes valuable computing time that could be used by other researchers. Any jobs with a long wait or that contain a sleep loop may be terminated without advance notice. Additionally, any processes that may create performance or load issues on the head node or interfere with other users’ jobs may be terminated. This includes compute jobs running on the compute nodes.

Storage Resources Limit Policy

The storage on the HPC cluster is comes in three forms – globally accessible permanent storage (/home, $HOME), globally accessible temporary storage (/globalscratch, $GLOBALSCRATCH), and node-local temporary storage (/localscratch, $LOCALSCRATCH, $SCRATCH).

	/home - this 512TB partition is available on the login/head node as well as all compute nodes. Permanent, long-term data should be stored here, but other data on which your computations will be done must be moved to the faster global (/globalscratch) or local (/localscratch) directories at run time. Please refrain from running calculations with large I/O footprint in this partition because they will compromise the whole cluster. The environmental variable $HOME refers to users home directories (/home/$USER). There is a disk usage quota of 100GB per faculty/staff and 10GB per students. If you need storage exceeding this quota, please request an increase by emailing hpc@cofc.edu.

	/globalscratch - this 35TB partition is a fast, temporary storage that is available on the login/head node as well as all compute nodes. Users with jobs that span multiple nodes, or intermediate data output exceeding 300GB are encouraged to use this partition for temporary storage. While there is currently no limit on how much of the storage users take up in this partition, files stored here are periodically purged to make sure there is always sufficient space for running calculations.

	/localscratch - this partition is a temporary space that is strictly local to individual compute nodes. Users running calculations contained within individual nodes whose disk usage won’t exceed 300GB on most compute nodes and 600GB on the bigmem node are strongly encouraged to use this space.

Acknowledgement of CofC HPC Usage

Please acknowledge in your publications and presentations the role that CofC’s HPC resources have played in your research and teaching. We appreciate your conscientiousness in this matter. Acknowledgement and pre-publication notification helps

	communicate the role HPC plays on campus teaching and research

	encourage more faculty, students and staff to incorporate HPC into their teaching and research

	justify CofC’s investment in HPC

	ensure continued funding and support to keep HPC resources available and growing in the future

Reporting success stories

Please alert our IT communications department or HPC team about papers and presentations that utilized CofC’s HPC resources and personnel. Some of these success stories will be highlighted in IT’s communication as well as other campus publications.

Publications, Presentations and Other Products

Any publications, presentations, websites, patents and other products resulting from work done on CofC HPC machines should include the following citation:

“Computation for the work described in this product was supported by the College of Charleston’s High Performance Computing (HPC) resources (https://hpc.cofc.edu).”

Copies of published papers acknowledging HPC should be submitted for inclusion on the HPC project website, under the publications page [https://hpc.cofc.edu/publications] as well as the CofC Research and Grants Administration Office [http://research.cofc.edu/administration/index.php]. Be sure to include complete publication information (i.e, a URL, PDF, or PS file of the actual publication) and indicate if there are any restrictions on publication.

Grants and Funding

If you are submitting proposals for grant funding with a computational component that can take advantage of our HPC resources, please contact our Research and Grants Administration Office personnel [http://research.cofc.edu/administration/contact-orga-staff/index.php] and hpc@cofc.edu to discuss ways in which

	you can use our HPC resources in your researcher

	the presence of HPC resources can strengthen your proposals

	you can request funding to add to our HPC resources

If your project is supported by grants or other funding, this information should be included on the HPC project website under the grant page (https://hpc.cofc.edu/projects). This will be used internally to provide a better idea of how CofC researchers are making use of the HPC for externally funded projects.

Communication Policy

The email account you provided will automatically be subscribed the CofC’s HPC mailing list for important system announcements. There will also be a forum and knowledge base platform for users to ask questions and address common problems.

All emails regarding HPC questions, concerns, and maintenance requests should be sent directly to hpc@cofc.edu. Response time will vary depending on the nature of the request and staff workload.

Policy Violations

If it has been determined that you have violated any of the HPC resource policies, or any other CofC IT policies, your account(s) will be deactivated immediately. Your account will not be reactivated until HPC management receives a formal request from your faculty mentor or leader of your project.

If you have any questions or concerns regarding any of these policies, please send an email to hpc@cofc.edu.

Support

If you need any help, please follow any of the following channels.

	Submit a support ticket through TeamDynamix [https://cofc.teamdynamix.com]

	Service requests [https://cofc.teamdynamix.com/TDClient/Requests/ServiceDet?ID=35085]. These include inquiries about accounts, projects and services

	Request account

	Seek consultation about teaching/research projects

	Inquire about operations

	Ask about documentation

	Incident requests [https://cofc.teamdynamix.com/TDClient/Requests/ServiceDet?ID=35086]. These include any problems you encounter during any HPC operations

	Inability to access the cluster or individual nodes

	Inability to run calculations

	Inability to access data

	If TeamDynamix is inacessible, please email hpc@cofc.edu directly or

	Email helpdesk@cofc.edu to contact the campus helpdesk or

	Call the campus helpdesk at 853-953-3375 during these hours

	Mon - Fri 7:30 AM - 10:00 PM

	Sat - Sun 2:00 PM - 10:00 PM

	Stop by Bell Building, Room 520 during normal work hours (M-F, 8AM-5PM)

We recognize that there are a lot of hurdles that keep people from using HPC resources. We have experience facilitating research computing for experts and new users alike. So, please feel free to contact us and we will work to get you started.

description: ‘News, updates, outages, maintenance periods’

System News and Updates

June 2020

Updates

	R/4.0.0 compiled with GNU8+OpenBLAS and Intel+MKL is available

Outage

	06/09/20 - a persistent cooling problem in our campus datacenter forced us to power down the HPC until a permanent fix is in place.

May 2020

Updates

	Documentation page moved to https://docs.hpc.cofc.edu

	HPC@CofC highlighted on Campus IT’s biannual newsletter [https://mailchi.mp/2b6b35b78547/information-technology-newsletter-spring-2020?e=e3ac133ef2#Solving%20the%20Big%20Questions]

	New JupyterHub kernels including Python[2.7/3.6/3.7], R, Julia, Matlab, Mathematica, GNUplot, and ArcGIS … etc. Check them out at https://hpc.cofc.edu/jupyterhub

	PGI compilers added

Outage

	05/17/20 - a cooling problem in our campus datacenter forced us to power down most of the cluster for 18 hours. Everything has been restored to its normal state now. Please report any problems to hpc@cofc.edu

Maintenance

	05/23/20 - the cluster will be inaccessible from 8AM-8PM due to a planned public network upgrade. The HPC will continue operating normally, but it won’t be accessible during this period.

April 2020

Updates

	JupyterHub installed. Please see the documentation here. Users are encouraged to use it instead of setting up SSH port forwarding themselves.

	FastX3 upgraded to 3.0.46

March 2020

Updates

	Singularity upgraded to version 3.4.1

	FastX3 upgraded to 3.0.44

	Jave JDK version updated to java/jdk-11.0.7. Use modules to load it.

February 2020

Updates

	Split view of compute and storage servers in Ganglia

	New 24-core compute node with 1 NVIDIA Quadro P4000 GPU and 2TB local storage deployed

	MarvinSuite [https://chemaxon.com/products/marvin] from ChemAxon [https://chemaxon.com] available on the login node. Some features are not available in the free version, so you may need to get a license by creating an account [https://accounts.chemaxon.com/register] at ChemAxon and request a free personal academic license. [https://www.chemaxon.com/my-chemaxon/my-academic-license/]

	Community version of Cambridge Crystallographic Data Centre’s Mercury [https://www.ccdc.cam.ac.uk/Community/csd-community/freemercury/] – you would need your own license to access features only available in the commercial version such as CSD System, CSD Materials, CSD Discovery

Dec 2019 - Jan 2020

Updates

	Newly installed software

	chem/amber/18-gpu and chem/amber/18-cpu with AmberTools19

	chem/xtb/6.2.2

	math/matlab/r2019b

	bio/ncbi-blast+/2.10.0

	bio/mothur

	See the example runs here [https://github.com/hpc-cofc/example-runs]

November 2019

Updates

	Documentation on our remote desktop service (StarNet FastX) is added here. You can download the FastX desktop client or a web client.

	Documentation on VisIT [https://visit.llnl.gov] and ParaView [https://www.paraview.org/] is added here.

	Please run module spider to see newly installed and updated software

October 2019

Updates

	A new remote desktop service (StarNet FastX) is available to get a full graphical Linux environment on the HPC. You can download the FastX client for your local computer here.

	VisIT and ParaView visualizations are now available on the HPC to allow remote visualization of data on the HPC on your local computer. Documentation on these tools will be available soon.

	The Spack package manger is made available to users to compile very complex software stacks in their own space. Please run ‘module purge; module load spack’ to set up the Spack environment.

Maintenance

	10/04/19 - 10/20/19 : network access to the HPC may be blocked from certain locations during some traffic rerouting attempts to optimize the network’s throughput

September 2019

Updates

	A host of new bioinformatics packages are now installed on the cluster. You can access them using modules from a common area or install the Bioconda package from Anaconda to install them in your home directory. These packages are

	bio/vcftools, bio/samtools, bio/ngstools, bio/minimap2, bio/hisat2, bio/bwa, bio/bowtie2, bio/bowtie, bio/bedtools, bio/angsd

	see examples at CofC-HPC GitHub page [https://github.com/hpc-cofc/example-runs/tree/master/10_bio]

	For other newly installed software, please run module spider. There should be accompanying example runs at CofC-HPC GitHub page [https://github.com/hpc-cofc/example-runs/tree/master/10_bio]

	More documentation including YouTube videos are in the works. Please check in later for links

August 2019

Updates

	Standard version of AIMALL [http://aim.tkgristmill.com/] is installed to do atoms-in-molecules(AIM) analysis on molecular systems starting from quantum mechanical wavefunctions.

	The host name of the login node (hpc.cofc.edu) has been aliased as ‘openhpc.cofc.edu’

	Documentation on using a Cendio Thinlinc client to get remote desktop access to the cluster is added here [https://hpc-cofc.gitbook.io/docs/using-the-hpc/quickstart#graphical-user-interface-gui].

Maintenance

	A maintenance period will be scheduled at the end of the month to enable database integration to our scheduler and make other changes.

July 2019

Updates

	Jupyter Notebooks are now available. You can set up your own Anaconda environment to run Python2/3, R and other codes using a web Jupyter Notebook. Please see the Jupyter Notebooks page

Maintenance

	Network access to the cluster will be intermittent Thursday, July 18, 2019 from 1:30PM to 4:00PM due to a planned firewall upgrade in the datacenter. All your calculations and services that are not dependent on external network access will proceed uninterrupted. Please report any problems to hpc@cofc.edu.

June 2019

Updates

	The available software has been expanded substantially. Please check the Software List or enter module spider to see the current list.

Maintenance

	05/20/19-07/03/19 - Support will be limited due to staff vacations. We will try to accommodate any requests sent to hpc@cofc.edu.

May 2019

Updates

	R/3.4.2 and R/3.5.2 are added for the GNU7/8-openmpi3 and Intel-openmpi3 stacks

	The available software has been expanded substantially. Please check the Software List or enter module spider to see the current list.

Outage

	05/20/19 - a cooling problem in our campus datacenter forced us to power down the cluster for 10 hours. Everything has been restored to its normal state. Please report any problems to hpc@cofc.edu.

April 2019

Updates

	04/25/19 - WebMO installation is up with interfaces to many computational chemistry software including Gaussian16, GAMESS, Orca, Psi4 and MOPAC

	04/22/19 - the cluster is open to all campus users. Please feel free to Request an Account

	04/05/19 - the cluster is open to a few users for testing. It’ll be open to all other users in two weeks if it is deemed ready for production runs.

March 2019

Updates

	03/07/19 - The HPC cluster is installed by Dell-EMC.

	03/11/19 - Testing and benchmarking the cluster

	03/26/19 - HPC software stack installation

	04/02/19 - Configuration of user environments

	04/05/19 - Cluster open to a few test users

	04/22/19 - Cluster open to all users.

Globus Data Transfer Tool

Globus is a powerful data transfer tool that has a wide range of support for popular storage systems and a simple graphical user interface. Using Globus is as easy as 1, 2, 3: 1. Set-up your Globus Account 2. Find or Set-up Endpoints 3. Transfer your Files & More

Getting Started and Signing In

Globus is primarily used via its web interface, though it is possible to download a personal client or use command line tools. 1. Navigate to the Globus website (https://www.globus.org/) and click Log in.

	Select your organization Oak Ridge National Laboratories from the drop-down menu and select Continue.

	Use your username and password to log in.

	If you have an existing Globus account, you may choose to link them at this time, or skip to the next step, by clicking No thanks, continue.

	Accept the user agreement and Continue. The next screen with ask you to Allow permissions.

For a list of common Endpoints or if you’d like to learn how to use Globus Endpoints, click here for our guide.

📝 Note: If you can not login to the DTN, but can to other CCLA systems (like the login nodes), your account may have been temporarily blocked on the DTN. This occurs, for example, upon too many failed password attempts. If so, contact the CCLA.

Globus Command Line Interface

If you wish to utilize the Globus transfer tools from the command line, you can download the Globus Command Line Interface (CLI). It is available as a Python package.

Installing the Required Tools

Since the tool is a Python package, you will need Python installed, as well as the pip installer.

	Ubuntu:

sudo apt-get install python
sudo apt-get install python-pip
export PATH="~/.local/bin:$PATH"
echo 'export PATH="~/.local/bin:$PATH"' >> "$HOME/.bashrc"

	CentOS:

sudo yum install python
sudo yum install python-pip
export PATH="~/.local/bin:$PATH"
echo 'export PATH="~/.local/bin:$PATH"' >> "$HOME/.bashrc"

	macOS:

sudo easy_install python
sudo easy_install pip
export PATH="~/.local/bin:$PATH"
echo 'export PATH="~/.local/bin:$PATH"' >> "$HOME/.bashrc"

Some versions of Python will not be installed in ~/.local. If you have trouble getting globus commands to execute, try the following commands to change the path:

GLOBUS_CLI_INSTALL_DIR="$(python -c 'import site; print(site.USER_BASE)')/bin"
echo "GLOBUS_CLI_INSTALL_DIR=$GLOBUS_CLI_INSTALL_DIR"

export PATH="$GLOBUS_CLI_INSTALL_DIR:$PATH"
echo 'export PATH="'"$GLOBUS_CLI_INSTALL_DIR"':$PATH"' >> "$HOME/.bashrc"

	Windows:

	The Windows package manager “Chocolatey” is recommended for installation. See here [https://chocolatey.org/install] for Chocolatey installation instructions.

	To install Python and pip, see here [http://docs.python-guide.org/en/latest/starting/install3/win/#install3-windows].

	All Operating Systems: To install the Globus CLI, use the following command: pip install --upgrade --user globus-cli.

Optional: if you wish to use the Globus CLI from within a python virtual environment, see instructions here [https://docs.globus.org/cli/installation/virtualenv/]. Otherwise, you may continue using this guide.

To start, you will need to log in to Globus: globus login. Follow the instructions to get logged in. A browser window may appear.

To make sure that your login was successful, type globus get-identities 'go@globusid.org'. A successful output will look something like this: c698d42e-d274-11e5-bf75-1fc5bf53bb56.

Globus CLI Basics

	Endpoint Search

 $ globus endpoint search 'CCLA OR'
ID	Owner	Display Name
 57230a10-7ba2-11e7-8c3b-22000b9923ef | ccla@globusid.org | CCLA-HPC

	Endpoint Management

	Use variables for endpoint IDs: Endpoint IDs are cumbersome. You cannot rename them, but you can store them as variables. For example:

 epCCLAOR=57230a10-7ba2-11e7-8c3b-22000b9923ef

Now you can use the variable to display information and manage files (with truncated output):

 $ globus endpoint show $epCCLA-HPC
 Display Name: CCLA-HPC
 ID: 57230a10-7ba2-11e7-8c3b-22000b9923ef
 Owner: ccla@globusid.org
 Activated: True
 Shareable: True
 Department: CCLA
 Organization: Doane Univ
 Department: CCLA
 Visibility: True
 Default Directory: /~/
 Force Encryption: False
 Managed Endpoint: True

	Make a directory:

 globus mkdir $epCCLA-HPC:~/example_dir

	List the contents of a directory:

 $ globus ls $epCCLA-HPC:~/
 example_dir/
 ccla-user-guide.pdf
 hello-world.c
 hello-world.pbs

	File transfer between endpoints:

	First, search for a second endpoint. Then set that endpoint as a Bash variable.

 $ globus endpoint search 'OLCF ATLAS'
ID	Owner	Display Name
 ef1a9560-7ca1-11e5-992c-22000b96db58 | olcf@globusid.org | OLCF ATLAS
 $ epATLAS=ef1a9560-7ca1-11e5-992c-22000b96db58

	Make a single file transfer.

 globus transfer $epCCLA-HPC:/ccla-user-guide.pdf $epATLAS:~/ccla-user-guide.pdf \
 --label "user-guide"

	Make a batch transfer.

 $ globus transfer $epCCLA-HPC:/example_dir/ $epATLAS:~/ \
 --batch --label "CCLA Batch" < in.txt

Related Tutorials

	Globus Endpoints

	Graphical SFTP

Globus Endpoints

Globus Endpoints are storage systems to which you have access. Once an Endpoint is located or created Globus saves the location for you so you do not need to repeatedly search type paths.

Endpoint Search Term(s)	Storage System	Path	Description
:—	:—	:—	:—
CCLA HPC	NFS	/~/	CCLA open research, user home directory
CCLA HPC	NFS	/data/	CCLA open research, NFS project directories
CCLA HPC	Lustre	/lustre/or-myst/	CCLA open research, project directories. High-performance, temporary storage.
OLCF ATLAS	OLCF DTN	/path/to/project/file/data	OLCF-managed NFS and Lustre storage system.

📝 Note: If you’re having trouble finding an existing Endpoint, email the CCLA team.

Setting Up Endpoints

Note: AWS S3 Scality storage is not yet supported on Globus, but will be in the future.

	Click in the Endpoint box on the left side and search for CCLA-HPC.

	You will be redirected to enter your credentials.

[image: https://github.com/wendikristine/documentation-template/tree/62a326e16ecef2ff128ef0b976de12c16f6ea062/data-transfer-and-storage/screenshots/credentials.png] [https://github.com/wendikristine/documentation-template/tree/62a326e16ecef2ff128ef0b976de12c16f6ea062/data-transfer-and-storage/screenshots/credentials.png]

	Authenticating the Endpoint with your credentials is known as Endpoint Activation and can be done when adding and using an Endpoint for the first time, or can be completed by navigating to the “Manage Endpoints” screen as shown in the following image (Endpoints→Endpoint List→activate).

[image: https://github.com/wendikristine/documentation-template/tree/62a326e16ecef2ff128ef0b976de12c16f6ea062/data-transfer-and-storage/screenshots/globus-activate-endpoint.png] [https://github.com/wendikristine/documentation-template/tree/62a326e16ecef2ff128ef0b976de12c16f6ea062/data-transfer-and-storage/screenshots/globus-activate-endpoint.png]

	Once the endpoint is set you can modify the path to point to your file/data. In this example, we will connect to Lustre storage: lustre/tigris/ccla/proj-shared

	On the right side, set the endpoint. We will use OLCF Titan’s file system. Search for OLCF ATLAS.

	Again, you may adjust the path. Your home directory is default.

Creating an Endpoint on your Personal or Work Computer

It is easy to use your personal or work computer as a Globus Endpoint. Follow the instructions below.

📝 Note: You may need to create a firewall exception for the Globus Personal Client. For configuration instructions, please consult the details [https://docs.globus.org/how-to/configure-firewall-gcp/] on the Globus site.

	Choose a descriptive name for your endpoint and click Generate Setup Key.

	Copy the Setup Key. You will paste this into the software during setup.

	Navigate to the Globus Personal Connect webpage [https://www.globus.org/globus-connect-personal] to download the client onto your personal (or Univ-owned) computer.

	Click on the name of your operating system to obtain detailed instructions for installing the client and setting up the Endpoint.

[image: https://github.com/wendikristine/documentation-template/tree/62a326e16ecef2ff128ef0b976de12c16f6ea062/data-transfer-and-storage/screenshots/globus-choose-operating-sys.png] [https://github.com/wendikristine/documentation-template/tree/62a326e16ecef2ff128ef0b976de12c16f6ea062/data-transfer-and-storage/screenshots/globus-choose-operating-sys.png]

	Once the client is installed, launch the program. You will be prompted to paste your setup key.

📝 Note: The Globus Personal Endpoint Client may produce errors if you are connected via VPN.

	Now you may use the Globus web interface or the command line interface to search for your new endpoint using the name you provided in step 1.

Globus Transfers & More

Globus File Transfers

	Find the endpoints (on the left and right of the screen) you wish to use according to the endpoints instructions.

	Modify the paths to the data you wish to transfer. For this example, we will move a file from CCLA Lustre storage to OLCF Atlas.

	Click and drag files/folders between the two halves of the screen.

[image: https://github.com/wendikristine/documentation-template/tree/62a326e16ecef2ff128ef0b976de12c16f6ea062/data-transfer-and-storage/screenshots/globus-transfer.png] [https://github.com/wendikristine/documentation-template/tree/62a326e16ecef2ff128ef0b976de12c16f6ea062/data-transfer-and-storage/screenshots/globus-transfer.png]

Additional Features

	Create a Folder: Globus also supports the creation of folders from within the browser interface.

[image: https://github.com/wendikristine/documentation-template/tree/62a326e16ecef2ff128ef0b976de12c16f6ea062/data-transfer-and-storage/screenshots/globus-menu.png] [https://github.com/wendikristine/documentation-template/tree/62a326e16ecef2ff128ef0b976de12c16f6ea062/data-transfer-and-storage/screenshots/globus-menu.png]

	Sharing Endpoints: You can share endpoints with anyone who has a Globus account. If you are sharing from a managed endpoint (i.e. CCLA OR) he or she will also need to have the proper credentials to access that resource.

📝 Note: Shared endpoints can only be created on personal endpoints if you have a subscription service through Globus. On CCLA resources, shared endpoints may be requested by contacting the CCLA.

	Sharing a personal endpoint:

	Navigate to the endpoint list that is administered by yourself: here [https://www.globus.org/app/endpoints?scope=administered-by-me].

	Click on the endpoint you would like to manage.

	On the resulting screen, click the My Shares tab. Then click + Add Shared Endpoint.

	Fill out the required information, as shown below.

[image: https://github.com/wendikristine/documentation-template/tree/62a326e16ecef2ff128ef0b976de12c16f6ea062/data-transfer-and-storage/screenshots/globus-share-endpoint.png] [https://github.com/wendikristine/documentation-template/tree/62a326e16ecef2ff128ef0b976de12c16f6ea062/data-transfer-and-storage/screenshots/globus-share-endpoint.png]

	Follow the instructions for configuring the shared endpoint. For additional information of sharing files and endpoints, see the Globus documentation [https://docs.globus.org/how-to/share-files/].

Moving Data

CofC’s HPC’s 10Gbps ethernet connection to the rest of the campus and outside networks allow for fast movement of large data sets into and out of the cluster. There are several transfer tool/protocol options to choose from to fit your needs.

	Secure copy (scp) via the command line to and from storage locations, including local computers.

 scp username@remote-host1.edu:/path/to/directory/example.txt username@remote-host2.edu:/path/to/directory/

	Secure (or SSH) file transfer protocol (SFTP) can be used to transfer files between two remote storage locations (similar to scp) but also allows the user to list directories and see content. You can use SFTP as long as you have SSH access to that host.

 sftp username@remote_hostname_or_IP

	Graphical clients (SFTP) will allow you to use a graphical user interface with drag-and-drop capabilities. CCLA maintains documentation for CyberDuck and WinSCP.

For Linux users, there is no clear recommendation for SFTP clients. No one free client supports all of CCLA storage services and behaves consistently. However, Cloud Explorer [http://cloud-explorer.org/] supports all of CCLA services and typically behaves predictably on Linux systems. See here [https://www.linux-toys.com/archives/945] for a how-to guide using CloudExplorer and Scality.

	rsync [https://rsync.samba.org/] or rclone [https://rclone.org/] (supports s3) are other command line utilities that may suit your data transfer needs.

Graphical Client SFTP

Graphical file transfer clients can be used to move data between your local machine and remote storage locations. Once you install the client on your computer and set up the remote connection, you may move folders and files between your computer and the remote storage using a drag-and-drop method.

CyberDuck (macOS and Windows)

Download Cyberduck here [https://cyberduck.io/] and run the installation.

WinSCP (Windows)

Download WinSCP here [https://winscp.net/eng/download.php] and run the installation.📝 Note: In cases where an SSH key is required for access, you must store the path to the key in WinSCP for each connection. To store the key, enter the connection information that you will find in the steps below. Then, click the Advanced... button. Provide the path to your SSH private key.

Essential Commands

	Overview

	Common Shortcuts

	Basic Commands

	Pipe and Redirection

Overview

	Linux has a hierarchy of directories that lists contents of files in a tree-like format, starting from the file system root (/).

	Linux is case-sensitive, e.g. Myfile, myfile, MYFILE, and MyFile are four unique files.

	Linux does not require filename extensions such as .doc, .exe, and .abc. The . extension is simply part of the filename. Sometimes data files are named with extensions (.hdf, .cdf, .tar) for human readability, though this is optional.

	A file named with . at the beginning will be considered a hidden file.

	You can use the <TAB> key to autocomplete commands, paths, and environment variables. For example, you can type cal on your terminal followed by <TAB> to test this. If there is more than one option for the autocomplete to choose from, pressing <TAB> twice will provide a list of all possible options based on what you have typed.

	The up-arrow will display the previous command you have typed and if you press the down-arrow, it will refer to the following command.

	The history command will show all of the previous commands you have entered during the last session(s).

Common Shortcuts

macOS	Windows	Action
:—	:—	:—
CMD+D	CTRL+D	Exit a terminal, same as typing exit
CMD+L	CTRL+L	Clears the screen, same as typing clear
CMD+C	CTRL+C	Breaks/cancels an ongoing operation
CMD+Z	CTRL+Z	Pauses (stops) an ongoing operation
CMD+N	CTRL+N	Opens a new terminal

Command Line Shortcuts

macOS	Windows	Action
:—	:—	:—
CMD+A	CTRL+A	Move to the beginning of the line
CMD+E	CTRL+E	Move to the end of the line
CMD+H	CTRL+H	Erase backward
CMD+D	CTRL+D	Erase forward
CMD+F	CTRL+F	Move forward one character
CMD+B	CTRL+B	Move backward one character
OPT+F	ALT+F	Move forward one word
OPT+B	ALT+B	Move backward one word
ALT+CTRL+F	Erase forward one word	
ALT+CTRL+B	Erase backward one word	
CMD+P	CTRL+P	Previous command (up arrow)
CMD+N	CTRL+N	Next command (down arrow)

📝 Note: If you want to learn more shortcuts, please consult more documentation here [https://github.com/hpc-cofc/documentation/tree/82859fa732035bffb51b748128e02532b5af5c88/learning-linux/essential-commands/shortcuts].

Basic Commands

	pwd: Print Current Working Directory

pwd
/Users/x0y

The output of pwd in this case, is the home directory of the user x0y, which is shown with the complete path starting from root(/)

	ls: List the contents of the current directory

ls
Documents/ Pictures/ Desktop/ Downloads/ document.txt

The output is a list of four directories (followed by a /) and one file. To see information about the contents in a list, type ls -l.

	cd: Change directory

cd Documents

In this case, we are entering the “Documents” directory.

If you want to go directly to your home directory (x0y), you can type cd without any specification of which directory.

In the case of nested folders, you can jump one directory level upwards by typing cd ..

alias: In case of deeply nested folders (/path/to/project/com/java/lang/morefiles) that might take more than 4 directory levels upwards, you can create an alias, for example, alias ..2="cd ../.." or alias ..3="cd ../../.." or alias ..4="cd ../../../..". If you wish to make these aliases a permanent feature of your Bash environment, you may add the commands to the end of the .bashrc file. Edit the .bashrc file by opening it in your favorite text editor (it is located in your home directory). For example, type vi .bashrc.

	whoami: Shows the user ID as a name

whoami
x0y

This shows the username that is logged in to the current session of the machine.

If you need additional information about the user, such as, to which groups they are a member, type id.

If you want to see all the users that are logged in to the computer, you can type w.

	date: Display the date and time of the system

date
Wed Apr 4 09:06:30 EDT 2018

The date is shown in a complex format. Use date +%F format if you want to do a backup of a file including the date in the filename [https://github.com/hpc-cofc/documentation/tree/82859fa732035bffb51b748128e02532b5af5c88/learning-linux/bash-scriptingbackup].

If you want to calculate, in seconds, the duration of a program, you can use the date +%s command.

	cal: Display a calendar of the current month

cal

This command displays the calendar of the current month of the year in which the command is executed.

In case you need the whole year calendar of 2018, you may type cal 2018 or set any other year you want to check.

If you want to display any particular month of the year, you can type, for example, cal March 2018.

To display the Eastern date of the current year, please type ncal -o.

	cat: Creates a single or multiple files, views the contents of a file, concatenates files, and redirects output into the terminal or into files

cat /Users/x0y/myfile.txt
hello world

In this case, we want to display the content of myfile.txt which is located inside the x0y directory.

If we are positioned inside the x0y directory, all that is needed is cat myfile.txt to see its contents, which is “hello world”.

You can view the content of two files at the same time with the cat file1.txt file2.txt.

In case you need the lines of a text numbered, please type cat -n myfile.txt.

	echo: Display a line of text or a string on standard output or into a file

echo "Hi Univ"
Hi Univ

In this example, the string Hi Univ is shown because we send that message to the terminal.

To view the value assigned to a variable, add $ before the variable name:

(e.g. x=10; echo "The value of 'x' is: $x").

If you need a new line \n, use the option -e (e.g. echo -e "Hello \n world").

	touch: Create a new empty file

touch myNEWfile

In this case, myNEWfile was created inside the directory in which you are positioned.

You can create more than one file at the same time with by typing touch file1 file2.

If you want to create lots of files that share a common string, e.g. test1.txt, test2.txt, test3.txt, and so on until 25, you can use touch test{1..25}.txt.

	mkdir: make directory

mkdir myNEWdir

In this case, a new directory called myNEWdir is created in the current path.

If you want to set the permission of the directory while you are creating the directory, you can do so by typing mkdir -m a=rwx myNEWdir. Here, the letters r, w, and x stand for read, write, and execute, respectively. For more information on file and directory permissions, see here.

If you want to create multiple directories at once, run mkdir test1 test2 test3.

If you want to create several subdirectories at one time, type mkdir -p /home/test/test1/test2/test3/test4.

	cp: Copy files and directories

cp /path/to/file_src /path/to/file_dest

In this case the contents of file_src (source) will be copied to file_dest (destination) and both files will be present in both paths.

If you need to copy more than one file into a directory, you can type cp main.c def.h /Users/x0y/mydir/.

To copy all the files you have (in your current path) with the extension .c to a directory called bak, you can type cp *.c bak. The asterisk (*) is a wild-card character.

	mv: Move or rename the files or directories

mv file1 Myfile1

The file called file1 was renamed as Myfile1.

If you want to move all of your C files to a subdirectory called bak, you can run mv *.c bak.

If you want to create a backup when copying your .txt files into the mybak directory (to not overwrite existing files within mybak) use: mv -bv *.txt /Users/x0y/mybak.

	rm: Delete files or directories

rm file1 Myfile1

The files called file1 and Myfile1 will be removed.

For directories, the recursive option -r is needed, e.g. rm -r modelOutput.

	man: Display the manual of the Linux commands

man sudo

A manual related to the sudo command is displayed explaining how the sudo command will grant you privileges to execute commands as the superuser does.

For further information you can do man man to read more about man. To exit a manual page, type q.

Pipe and Redirection

	| Pipeline

A pipe is a form of redirection that sends the output of a program (written _before the pipe_) to another one (written _after the pipe_) for further processing.

To make a pipe, put a vertical bar (|) on the command line between two commands.

man pipe | cat > /tmp/myMAN.txt

The command man pipe will display the content of all the information about pipe, then that content will be processed by cat (taken as its input) and be redirected to the file /tmp/myMAN.txt. So, the output, the content of myMAN.txt will display the manual information about pipe.

	> Redirecting output

Commands can send and receive streams of data to and from files and devices.

echo "Test report title" > /tmp/test.txt

“Test report title” will be written to the file test.txt located inside the /tmp directory.

It is also possible to send all the content of /tmp/hi.txt to /Users/x0y/hello, by using /tmp/hi.txt > /Users/x0y/hello.

Mail -s "Subject" to-address@example.com < Filename will email the content of Filename.

	>> Appending (postpending) redirected output

This command will append (postpend) information to where it is designated.

echo "This report was done at $HOSTNAME at $(date+%F)">>/tmp/report.txt

The output of the first part of the command (before the >>) will be added at the end of the file /tmp/report.txt.

Help - man/tl;dr

Man pages

Most Linux commands and utilities have well-maintained help/manual pages that you can invoke by entering man 'command' for any given 'command'.

tldr

However, these thorough man pages can sometimes be overwhelming and verbose. Thankfully, tldr is there to give you the most concise and practical uses of these commands and utilities. tldr is a simplified and community-driven man page for the masses.

tldr is installed on the CofC cluster, but you can install it in your local environment.

[image: https://github.com/tldr-pages/tldr/blob/master/screenshot.png]tldr

More at the tldr GitHub page [https://github.com/tldr-pages/tldr]

Overview

The HPC team supports solutions based on Linux, so our researchers and users may want to improve their familiarity with it.

We have grouped this information into categories which are the most used Linux commands as follows:

	Overview

	Essential Commands

	Managing Files

	Create Files

	File Permissions

	Bash Scripting

	Environment Customization

	Script: Backup

	Script: Seconds

	Misc

	Working with Processes

	Services

	System Configuration

	Communication Protocols

	Task Manager (crontab, at)

📝 Note: If you need help with other commands or Linux utilities, please contact us.

Working with Processes

Processes are tasks that the operating system carries out.

	The ps Command

	Killing Processes

	Prioritizing Processes

	Background Processes

The ps Command

ps stands for process status [https://www.tldp.org/LDP/tlk/kernel/processes.html] and shows the running processes on a system.

To invoke it, run ps and it will display the following information:

	PID: process ID which identifies the running process

	TTY: is the terminal type

	TIME: Total CPU usage

	CMD: the command or program that is running, including options

	List all current running processes in the machine

ps -ef

The option -e will display all the processes, and the -f option will display in a full format listing.

	List the processes of a user

ps -f -u <user>

It displays the process that belongs to user. When you have multiple usernames, separate them using a comma.

	Check the execution time of a process

ps -eo comm,etime,user | grep httpd

It shows the command, time, and user(s) related to the “httpd” service. You can replace “httpd” with the service you are looking for.

	Find the top five running processes by memory usage

ps -eo pmem,pid,cmd | sort -k 1 -nr | head -5

It displays the top five of the output, organized in three columns with the memory that a process is taking, process ID, and the command, sorted by memory usage.

	Display the processes in the form of a tree diagram

pstree -np | less

The option -p shows process identification numbers (PIDs) and -n sorts its output in the order of the PIDs.

If you want to see the process tree of any specific user, please run pstree <user>. Use your username instead of <user>.

	Determine how much memory process uses

pmap 1232

It displays the memory usage map of a process 1232. If you need information for multiple processes, you can add the their PID separated by a space.

Killing Processes

All processes in Linux respond to signals. Signals are an OS-level way of telling programs to terminate or modify their behavior.

	kill: sends the TERM signal to the process to ask the process to terminate and exit smoothly

kill 1734

This terminates a process with a PID of 1734.

If this fails, the stronger signal 9, called SIGKILL can help by doing kill -9 1734. To see all the options, run kill -l

In case you cannot determine the number of the process, you can use the name of the program to make it stop: kill -9 firefox

	killall: if there are multiple instances of a particular command running, the command will terminate them all

killall firefox

In this case killall is closing a current program(s) that is running a process called firefox.

Prioritizing Processes

Linux schedules the process and allocates CPU time accordingly for each of them, but you can set the priority to get more CPU time by using the nice and renice commands.

The process scheduling priority has a nice value that ranges from -20 to 19. The highest priority will consume a lot of CPU and that is not nice, so we set it as -20. On the other hand, the least priority for a process is represented as nicer because it will not take much CPU resources, and a nice value of 19 then is set.

Only the root user can set a negative value. A nice value of a process can be seen in the column NI after you type top in your terminal.

	top: monitors processes and system resource usage on Linux

top

It displays the main 30 processes on the system sorted by CPU utilization, memory usage, and routine. See more information here [http://www.techoism.com/top-command-in-centosrhel/].

If you want to sort processes by CPU usage, you can do so with top -o %CPU.

To see a list of processes of any user, use top -u <user>. Please remember to replace <user> with your username or root.

	nice: sets priority on new processes

nice -n 10 apt-get upgrade

It sets a positive 10 as a nice value that gives less priority to a process.

	renice: sets a priority on existing processes

renice 10 -p 2187

It sets a priority of 10 to a process with an ID 2187. If its value was 0, you are lowering the priority.

📝 Note: You can set the default nice value of a particular user or group in the /etc/security/limits.conf file, by using the syntax: [username] [hard|soft] priority [nice value], e.g. backupuser hard priority 1.

Background Processes

A background process executes independently of the shell, without user intervention, leaving the terminal free for other work.

This means that you do not have to wait for a command to finish in the terminal to run another one. For further information, please click here [https://www.xaprb.com/blog/2008/08/01/how-to-leave-a-program-running-after-you-log-out/].

After using commands to run process in the background, you will immediately be returned to the shell, and you will see the shell prompt.

	&: include an ampersand at the end of the command you use to run the job

./myscript.py &

The file ./myscript.py is forked and runs in a separate sub-shell as a job. A process’s job number and its PID will be displayed and stored in a special variable $!. This can be seen later with echo $!.

	nohup: stands for no hang up and prevents termination of background processes after shell termination

nohup ./myscript.py &

The output generated by ./myscript.py will be saved in nohup.out in the current directory. If you logout, your process will not get killed.

To run more scripts at the same and leave them to be finished in background, run ./script.py & ./script2.py & ./script3.py &.

	screen: runs a background process on a remote server, and keeps it running despite a dropped connection

screen

This creates a new session when you log into another server. A screen ID is displayed after running your command(s).

To create a screen session with a name, please run screen -S name. See more screen options on man screen or here [http://dasunhegoda.com/unix-screen-command/263/].

To detach from the screen session with CTRL+A+D or if you are remotely logged in, you can do it with screen -d [SCREENID].

	jobs: once a process is forked, it can be seen in the jobs list

jobs
 [1]+ Running ./myscript.py &

It displays the list of the current jobs that are running in the background; there is the script ./myscript.py with the job number:1.

	bg: resumes suspended jobs in the current environment by running them as background jobs

dd if=/dev/zero of=myfile bs=1K count=2048000
 ^Z
 [1]+ Stopped dd if=/dev/zero of=file bs=1K count=2048000
 bg %1

The number 1 is the ID of the job as viewed under a job suspended; then, to use it with bg it must be preceded with a %.

	fg: runs them in foreground and occupies the current terminal and waits for process to exit

fg

Without any argument, fg runs the current job in foreground.

To see the ID of the jobs that are running in the background to bring them to the foreground, please type jobs. Then type the ID preceded by a%, e.g. fg %1.

	disown: removes the process from the shell’s job control, but leaves it connected to the terminal

./run_script.sh
 CTRL-Z
 [1]+ Stopped run_script.sh
 bg
 [1]+ run_script.sh &
 disown %1

The ./run_script.sh file is executed, then this job is suspended by pressing ctrl+Z, followed by bg to make it run in the background. Then, by typing disown %1, the job won’t get the SIGHUP signal to be shut down.

	sleep: tells Bash what time to run a command and delays execution to allow a process to start

sleep 3h; mplayer game.mp3

This will wait three hours to play game.mp3.

You might consider using m to set minutes, e.g.sleep 10m ; your_script, or d, for days. If you do not specify anything, the sleepy action will happen in seconds.

	wait: waits until the last background process is completed

collect-job1.sh &
 collect-job2.sh &
 collect-job3.sh &
 wait
 process-job-output.sh
 wait

The three scripts of “collection” that are running in the background will finish before the process-job-output starts.

wait ensures this process and asks to not exit the containing script until all the execution has finished.

Bash Scripting

Considerations

	It is crucial that the first line of the Bash script begins with the header #!/bin/bash.

	The extension of a file which represents a script should be .sh.

	Comments in Bash begin with # and run to the end of the line:

echo Hello, World. # prints out "Hello, World."

	To execute a script, you must be sure your file has the permission to be executed chmod +x your_script.sh. Click here to see more about permissions.

	If you are located in the same PATH were you created the script, you execute your script by running ./your_script.sh.

Conditionals (Decision Control Structure)

Use conditionals to specify different courses of action to be taken. In this case, we have three possibilities to check a number in a range of other values:

#!/bin/bash
#Setting a value to output
output=99
#Determine an action based on the output's value
if [$output -eq 100] #if the output is equal to 100
then
 echo "The calculation reaches 100%"
else
 if [$output -gt 100] #if the output is greater than 100
 then
 echo "The calculation is greater than 100%"
 else #only option is that the output is less than 100
 echo "The calculation is less than 100%"
 fi

Read more examples about if conditionals [http://tldp.org/LDP/Bash-Beginners-Guide/html/sect_07_01.html].

Loops (Repetitive tasks)

In a loop, commands will continue to run repeatedly until a task is executed for all elements. One useful command for loop calculations is for. Here is an example of printing numbers from 1 to 9:

#!/bin/bash
#Printing numbers from 1 to 9
for i in {1..9}; do echo $i; done

If you want to have all the numbers in the same line, add the -n option. If you want to add 4 units, use double parentheses in the operation:

#!/bin/bash
#Numbers from 1 to 9
#Add four units in the same line
for i in {1..9}; do echo -n "$((i+4)) " ; done

	Click here [https://www.tldp.org/LDP/abs/html/loops1.html] to see more examples.

Working with files (combining conditionals with Bash commands)

Check the existence of a file to determine the size of the file as well the quantity of words:

#!/bin/bash
#Clear the terminal
tput clear

#Request the name of the file to be evaluated
printf "Enter the absolute path of the file, e.g. /home/x0y/your_file\n"
read FILE

#Evaluate the file
if [-e $FILE]
then
 printf "The $FILE has a size of $(du -h $FILE | awk '{print $1}') and it contains $(wc -w $FILE | awk '{print $1}') words.\n"
else
 printf "File not found, keep trying..."
fi

📝 It is important to indent the code in the if block with 4 spaces. Also include 1 space between the contents of the brackets ([and]) and the brackets themselves.

Working with filesystems (combining conditionals with Bash commands)

Send an email if disk usage in the system has reached 90% or more:

#!/bin/bash
#Run 'df -H' first to check filesystems and usage
#Then filter with `grep` to not consider Filesystem, tmpfs, nor cdrom using the options `-vE`
#Take only columns 5 and 1 with 'awk' and keep that output using `while read` to do an action
df -H | grep -vE '^Filesystem|tmpfs|cdrom' | awk '{ print $5 " " $1 }' | while read output;
do
#Print the output with 'echo', and assign to `usep` only the first column of output, taking out '%'
 echo $output
 usep=$(echo $output | awk '{ print $1}' | cut -d'%' -f1)
#Partition is only going to take the names of your filesystems
 partition=$(echo $output | awk '{ print $2 }')
#if the value of `usep` is greater than or equal to 90 then you will print a message and send an email to alert
 if [$usep -ge 90]; then
 echo "Running out of space \"$partition ($usep%)\" on $(hostname) as on $(date)" |
 mail -s "Alert: Almost out of disk space $usep%" username@example.com
 fi
done

You can learn more about Bash scripting by taking a look at this tutorial [http://www.tldp.org/LDP/abs/html/].

Script: Backup

#!/bin/bash

SRC_DIR="/home/$USER/Documents/my_work/"

DEST_DIR="/home/$USER/Backups/"

FILENAME=Backup-$(date +%-Y%-m%-d)-$(date +%-T).tgz

tar --create --gzip --file=$DEST_DIR$FILENAME $SRC_DIR

Back to Essential Commands

Environment Customization

Before Starting

Consider these important facts:

	Environment variables are all upper case.

	To use their values, precede the name with a $.

Initializing Your Environment

Linux utilizes Bash as the default shell and when a session started it reads commands from ~/.bash_profile.

Environment variables are set in the file ~/.bashrc.

📝 Note: The files ~/.bash_profile and .bashrc are hidden. To list hidden files, type ls -a.

Know the Environment Variables

Here is a list of some common environment variables:

	$HOME - Path of your home directory

	$PATH - List of directories where the system checks for programs to run

	$LD_LIBRARY_PATH - List of directories where the system checks for shared libraries to load

	$HOSTNAME - The name of the host, e.g. or-condos-login.

📝 Note: See the values of all your environment variables by typing env on your terminal.

Working with the Environment Variables

	Display the value of an environment variable using echo:

echo $HOME
/home/UID

	Modify the value of environment variables with export:

export PATH=$PATH:/home/$USER
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/home/$USER/custom_lib_directory

	Set a value for environment variables:

export OMP_NUM_THREADS=12

This command sets the value of the variable called OMP_NUM_THREADS (an OpenMP parameter) to 12.

Script: Seconds

#!/bin/bash

START=$(date +%s.%N)

./execute/yourprogram/here
Do not forget to replace your own script and uncomment the previous line by deleting

DURATION=$(echo "$(date +%s.%N) - $START" | bc)

printf "Execution time: %.6f seconds" $DURATION

Back to Essential Commands

Command Line Shortcuts

macOS	Windows	Action
:—	:—	:—
CMD+A	CTRL+A	Move to the beginning of the line
CMD+E	CTRL+E	Move to the end of the line
CMD+H	CTRL+H	Erase backward
CMD+D	CTRL+D	Erase forward
CMD+F	CTRL+F	Move forward one character
CMD+B	CTRL+B	Move backward one character
OPT+F	ALT+F	Move forward one word
OPT+B	ALT+B	Move backward one word
ALT+CTRL+F	Erase forward one word	
ALT+CTRL+B	Erase backward one word	
CMD+P	CTRL+P	Previous command (up arrow)
CMD+N	CTRL+N	Next command (down arrow)

Know Your System

The following topics may be more relevant for system adminstrators than users, but they are essential to gaining a fuller understanding of the Linux environment users operate in.

	Know Your System

	System Configuration

	Services

	Communication Protocols

	Task Manager crontab, at

Working with Processes

Processes are tasks that the operating system carries out.

	The ps Command

	Killing Processes

	Prioritizing Processes

	Background Processes

The ps Command

ps stands for process status [https://www.tldp.org/LDP/tlk/kernel/processes.html] and shows the running processes on a system.

To invoke it, run ps and it will display the following information:

	PID: process ID which identifies the running process

	TTY: is the terminal type

	TIME: Total CPU usage

	CMD: the command or program that is running, including options

	List all current running processes in the machine

ps -ef

The option -e will display all the processes, and the -f option will display in a full format listing.

	List the processes of a user

ps -f -u <user>

It displays the process that belongs to user. When you have multiple usernames, separate them using a comma.

	Check the execution time of a process

ps -eo comm,etime,user | grep httpd

It shows the command, time, and user(s) related to the “httpd” service. You can replace “httpd” with the service you are looking for.

	Find the top five running processes by memory usage

ps -eo pmem,pid,cmd | sort -k 1 -nr | head -5

It displays the top five of the output, organized in three columns with the memory that a process is taking, process ID, and the command, sorted by memory usage.

	Display the processes in the form of a tree diagram

pstree -np | less

The option -p shows process identification numbers (PIDs) and -n sorts its output in the order of the PIDs.

If you want to see the process tree of any specific user, please run pstree <user>. Use your username instead of <user>.

	Determine how much memory process uses

pmap 1232

It displays the memory usage map of a process 1232. If you need information for multiple processes, you can add the their PID separated by a space.

Killing Processes

All processes in Linux respond to signals. Signals are an OS-level way of telling programs to terminate or modify their behavior.

	kill: sends the TERM signal to the process to ask the process to terminate and exit smoothly

kill 1734

This terminates a process with a PID of 1734.

If this fails, the stronger signal 9, called SIGKILL can help by doing kill -9 1734. To see all the options, run kill -l

In case you cannot determine the number of the process, you can use the name of the program to make it stop: kill -9 firefox

	killall: if there are multiple instances of a particular command running, the command will terminate them all

killall firefox

In this case killall is closing a current program(s) that is running a process called firefox.

Prioritizing Processes

Linux schedules the process and allocates CPU time accordingly for each of them, but you can set the priority to get more CPU time by using the nice and renice commands.

The process scheduling priority has a nice value that ranges from -20 to 19. The highest priority will consume a lot of CPU and that is not nice, so we set it as -20. On the other hand, the least priority for a process is represented as nicer because it will not take much CPU resources, and a nice value of 19 then is set.

Only the root user can set a negative value. A nice value of a process can be seen in the column NI after you type top in your terminal.

	top: monitors processes and system resource usage on Linux

top

It displays the main 30 processes on the system sorted by CPU utilization, memory usage, and routine. See more information here [http://www.techoism.com/top-command-in-centosrhel/].

If you want to sort processes by CPU usage, you can do so with top -o %CPU.

To see a list of processes of any user, use top -u <user>. Please remember to replace <user> with your username or root.

	nice: sets priority on new processes

nice -n 10 apt-get upgrade

It sets a positive 10 as a nice value that gives less priority to a process.

	renice: sets a priority on existing processes

renice 10 -p 2187

It sets a priority of 10 to a process with an ID 2187. If its value was 0, you are lowering the priority.

📝 Note: You can set the default nice value of a particular user or group in the /etc/security/limits.conf file, by using the syntax: [username] [hard|soft] priority [nice value], e.g. backupuser hard priority 1.

Background Processes

A background process executes independently of the shell, without user intervention, leaving the terminal free for other work.

This means that you do not have to wait for a command to finish in the terminal to run another one. For further information, please click here [https://www.xaprb.com/blog/2008/08/01/how-to-leave-a-program-running-after-you-log-out/].

After using commands to run process in the background, you will immediately be returned to the shell, and you will see the shell prompt.

	&: include an ampersand at the end of the command you use to run the job

./myscript.py &

The file ./myscript.py is forked and runs in a separate sub-shell as a job. A process’s job number and its PID will be displayed and stored in a special variable $!. This can be seen later with echo $!.

	nohup: stands for no hang up and prevents termination of background processes after shell termination

nohup ./myscript.py &

The output generated by ./myscript.py will be saved in nohup.out in the current directory. If you logout, your process will not get killed.

To run more scripts at the same and leave them to be finished in background, run ./script.py & ./script2.py & ./script3.py &.

	screen: runs a background process on a remote server, and keeps it running despite a dropped connection

screen

This creates a new session when you log into another server. A screen ID is displayed after running your command(s).

To create a screen session with a name, please run screen -S name. See more screen options on man screen or here [http://dasunhegoda.com/unix-screen-command/263/].

To detach from the screen session with CTRL+A+D or if you are remotely logged in, you can do it with screen -d [SCREENID].

	jobs: once a process is forked, it can be seen in the jobs list

jobs
 [1]+ Running ./myscript.py &

It displays the list of the current jobs that are running in the background; there is the script ./myscript.py with the job number:1.

	bg: resumes suspended jobs in the current environment by running them as background jobs

dd if=/dev/zero of=myfile bs=1K count=2048000
 ^Z
 [1]+ Stopped dd if=/dev/zero of=file bs=1K count=2048000
 bg %1

The number 1 is the ID of the job as viewed under a job suspended; then, to use it with bg it must be preceded with a %.

	fg: runs them in foreground and occupies the current terminal and waits for process to exit

fg

Without any argument, fg runs the current job in foreground.

To see the ID of the jobs that are running in the background to bring them to the foreground, please type jobs. Then type the ID preceded by a%, e.g. fg %1.

	disown: removes the process from the shell’s job control, but leaves it connected to the terminal

./run_script.sh
 CTRL-Z
 [1]+ Stopped run_script.sh
 bg
 [1]+ run_script.sh &
 disown %1

The ./run_script.sh file is executed, then this job is suspended by pressing ctrl+Z, followed by bg to make it run in the background. Then, by typing disown %1, the job won’t get the SIGHUP signal to be shut down.

	sleep: tells Bash what time to run a command and delays execution to allow a process to start

sleep 3h; mplayer game.mp3

This will wait three hours to play game.mp3.

You might consider using m to set minutes, e.g.sleep 10m ; your_script, or d, for days. If you do not specify anything, the sleepy action will happen in seconds.

	wait: waits until the last background process is completed

collect-job1.sh &
 collect-job2.sh &
 collect-job3.sh &
 wait
 process-job-output.sh
 wait

The three scripts of “collection” that are running in the background will finish before the process-job-output starts.

wait ensures this process and asks to not exit the containing script until all the execution has finished.

Communication Protocols

Protocols are a set of rules or standards that define the communication between devices on a network.

	Generalities of a Service

	The ssh Protocol

	The scp Protocol

	The nfs Protocol

Generalities of a Service

A process is a running program at a particular instant of time.

The process refers to an opening of a Web Browser or any other visible program or action for the user, but this term also includes programs that are running in the background waiting to be called by the system. Those programs can be services that offer remote connection, sending of mail, or translation of IPs into readable URLs.

These services are identified by a number of ports defined by the Assigned Numbers RFC [https://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xhtml].

The configuration of services is in /etc/services and includes the name, the port that defines the service, and which transport protocol is used (UDP or TCP) for each one.

The ssh Protocol

This protocol enables secure connection to the SSH server on a remote machine.

	Installation of the package

By default, in CentOS 7, the SSH package comes installed, but if not, please run:

yum install openssh openssh-server openssh-clients openssl-libs

It installs the openssh package to enable SSH as a server and as a client.

If you need additional information about yum commands, you can visit this link [https://www.centos.org/docs/5/html/5.1/Deployment_Guide/s1-yum-useful-commands.htm].

	The default configuration file

The default configuration file and settings for the SSHD daemon is in /etc/ssh/sshd_config.

cp /etc/ssh/sshd_config /etc/ssh/sshd_config.ori

This creates a copy of the original configuration file in order to prevent damage or mistakes during a custom configuration.

Then, you can customize the configuration in the /etc/ssh/ssh_config file with these options:

Port 22
 PermitRootLogin without-password
 PermitRootLogin yes
 PasswordAuthentication yes
 ForwardAgent yes
 ForwardX11 yes

Furthermore, to have the ability to run the protocol with the name of the servers such as ssh server_name, create a file ~/.ssh/config, and customize it with:

Host shortcut_name
 HostName 0.1.2.3
 Port 22
 User x0y
 ServerAliveInterval 120
 IdentityFile ~/.ssh/my_key.pem

Then, you will be able to enter the server called shortcut_name with SSH by using:

ssh shortcut_name

	Restart the SSHD service

Once you make the configuration changes, you can save and close the file. For the changes to take effect, you should restart the SSH daemon.

systemctl restart sshd.service

This command is used in case the SSHD service is enabled. To check the current status of the service, please read more about the status of a service.

	Generate an SSH Key

To secure the transmission of information, SSH employs different types of data manipulation techniques that include forms of asymmetrical encryption such as an SSH key.

ssh-keygen

Press Enter to accept the default location and filename which is ~/.ssh/id_rsa. Then press Enter, then Enter again to not set a passphrase when prompted.

Make sure the SSH key was successfully created by checking the encrypted content at ~/.ssh/id_rsa.pub.

This file must have the permission 600. To check it please run ls -AhlF ~/.ssh.

Finally, to copy the SSH key to a server, please run ssh-copy-id -i ~/.ssh/id_rsa.pub user@server

The scp Protocol

This protocol allows files to be copied to, from, or between different hosts. It uses SSH for data transfer and provides the same authentication and same level of security as SSH.

	Copy the file remote_file.txt from a remote host to the local host

scp x0y@remotehost.univ.edu:remote_file.txt /some/local/directory

	Copy the file local_file.txt from the local host to a remote host directory

scp local_file.txt x0y@remotehost.univ.edu:/some/remote/directory

	Copy the directory local_directory from the local host to a remote host’s directory remote_directory

scp -r local_directory x0y@remotehost.Univ:/some/remote/directory/remote_directory

	Copy the file fr1.txt from remote host rh1.univ.edu to remote host rh2.univ.edu

scp x0y@rh1.univ.edu:/some/remote/directory/fr1.txt x0y@rh2.univ.edu:/some/remote/directory/

	Copy multiple files from a local directory to a remote host home directory

scp one_file.txt another_file.txt x0y@remotehost.univ.edu:

The nfs Protocol

To set up NFS mounts, we will need at least two Linux/Unix machines. Here we will be using two servers.

	NFS Server: Univserver.org with IP-192.168.0.100

	NFS Client: Univclient.org with IP-192.168.0.101

NFS Server

	Configure export directory

For sharing a directory with NFS, we need to make an entry in the /etc/exports configuration file. Let’s create a new directory named nfsshare in the / partition of the server.

Then, we need to make an entry in /etc/exports and restart the services to make our directory shareable in the network.

mkdir /nfsshare

vi /etc/exports
/nfsshare 192.168.0.101(rw,sync,no_root_squash)

service autofs restart

It displays a directory in the / partition named “nfsshare” which is being shared with client IP “192.168.0.101” with read and write privileges. You can also use the hostname of a server.

NFS Client

	Mount a shared directory on an NSF client

To mount a directory in our server to access it locally, we need to find out what shares are available on the remote server or NFS Server with showmount.

showmount -e 192.168.0.100
Export list for 192.168.0.100:
/nfsshare 192.168.0.101

This command shows that a directory named nfsshare is available at “192.168.0.100” to share with your server.

	To mount a shared NFS directory permanently, we can use following mount command:

vi /etc/fstab
192.168.0.100:/nfsshare /mnt nfs defaults 0 0

service autofs restart

With vi /etc/fstab, we are setting the IP:name_directory to be mounted, and it will be mounted on /mnt. You can verify it with mount | grep nfs.

Task Manager (crontab, at)

📝 Note: The majority of the following commands must be run by the superuser @root

Part 1: Using the crontab Command

The crontab command is used to schedule commands to be executed periodically. It allows tasks to be automatically run in the background at regular intervals.

That means that you can use crontab to automatically create backups, synchronize files, schedule updates, and much more.

The main configuration file for cron is /etc/crontab. If you view the content of it, it will display:

Example of job definition:
.---------------- minute (0 - 59)
| .------------- hour (0 - 23)
| | .---------- day of month (1 - 31)
| | | .------- month (1 - 12) OR jan,feb,mar,apr ...
| | | | .---- day of week (0 - 6) (Sunday=0 or 7) OR sun,mon,tue,wed,thu,fri,sat
| | | | |
* * * * * user-name command to be executed

	List programmed tasks

crontab -l

It will list the crontabs that are currently running on your environment, if you are a root user, you can list all the crons that the system has.

If you have not set any jobs, it will display a message such as crontab: no crontab for x0y.

	Edit the list of cronjobs

crontab -e

The option e let you edit a list of tasks. You can set some tasks using this format:

Every hour, at the minute 37, a copy will take place
37 * * * * root cp a /tmp/b

Every day at 5:23 compression will occur
23 5 * * * root zip f1.zip f1

#Every week on Sunday at 03:19 a copy will be made
19 3 * * 0 root scp metis.univ.edu:/tmp/files .

#Every month on day 6 at 00:23 minutes, a script will be run
23 0 6 * * root ./script

#run a cron job from a script for every Monday, Wednesday and Friday at 7:00 pm
0 19 * * 1,3,5 nohup /home/x0y/script.sh > /tmp/script.log 2>&1

Part 2: Using the at Command

Use at when you want to execute a command or multiple commands once at some future time.

at 4:55pm Friday
echo '5 p.m. meeting with Carol' | mail raithel
^D
Job c00ceb7fb.01 will be executed using /bin/sh

The at command takes input up to the end-of-file character (ctrl _D _while at the beginning of a line). It reports the job number and informs you that it will use /bin/sh to execute the command. An email to raithel will be sent at 4:55pm on Friday with the Subject: ‘5 p.m. meeting with Carol’.

To program a script from now, you may add hours, minutes, or seconds with the + symbol, e.g.:

at now + 25 minutes
echo ^G > /dev/ttyp4
^D
Job c00ceb7fb.00 will be executed using /bin/sh

This script will notify you with a beep in 25 minutes.

	To get a list of your pending at jobs, enter atq. If you are superuser, atq shows you the pending at jobs of all users.

	To delete a job, enter atrm job_number where job_number is the job number returned by atq. The superuser can also remove other user’s jobs.

Services

Before checking the status of the SSH service, make sure you have the SSHD service enabled.

	Turning ON the SSHD service at boot time

systemctl enable sshd.service

To turn it off at boot time, please enter systemctl disable sshd.service.

	Check if a service is enabled or disabled

systemctl status sshd.service

It will display a message of active or inactive service.

	Reload SSHD configuration changes

systemctl start sshd.service
systemctl restart sshd.service
systemctl stop sshd.service
systemctl reload sshd.service

The start option will initiate the SSHD service, stop will stop it, and finally, restart or reload will refresh the new configurations.

System Configuration

	hostname: displays the name of the computer

hostname

It will show the current name of the machine.

To change the hostname, please type hostnamectl set-hostname <new_name>, and for additional configuration, the file is located at /etc/hostname.

	dmidecode: gives information about the hardware and detects if it is a virtual machine

dmidecode

The information includes manufacturer, model, serial number, asset tags, CPU sockets, PCI slots, DIMM slots, and other I/O port info detected by the BIOS.

	uname: displays system information about the Linux environment

uname -v

It will show you the version of the Linux kernel you are running.

If you want to know the hardware platform, such as x86_64 or 32-bits, please run uname -i. If you need more details about the software, please run uname -a.

	free: check the used and available space of physical memory and swap memory

free -g

It will display the size of the memory in GB (Gigabytes).

If you want to display the total line of the memory resource used, please run free -t or do cat /proc/meminfo.

	lscpu: shows CPU architecture information

lscpu

It will show the vendor of the CPU, as well as the GHz, cores per socket, etc.

You can view the information of your system CPU by viewing the content of the /proc/cpuinfo.

	top: shows statistical data related to the performance of a system and is updated every 5 seconds

top

It will display a real-time view of the performance data of all running processes in a system.

To sort by the use of CPU, type P, or if you want to sort by the use of memory, please type M, and u to view processes owned by a specific user. Press q to quit.

	iostat: lists CPU utilization, device utilization, and network file system utilization considered since the last reboot

iostat -C

It will display to columns: NAME and Comments in the /tmp/data_tab.txt file.

It will break the CPU utilization into user processes, system processes, I/O wait, and idle time.

	uptime: gives you the time for which the system has been up (or running)

uptime

It will display the current time, how long the system has been running, users currently logged on, and the system load averages for the past 1, 5, and 15 minutes.

Managing Files

	Part 1: Working with the Contents of Files

	Part 2: Data Manipulation

	Part 3: Working with a Collection of Files

	Part 4: Comparing Differences Between the Contents of Files

	Part 5: Compressing and Extracting Files

Part 1: Working with the Contents of Files

Let’s consider the content of file /tmp/matrix.c. You may paste the contents of the file into /tmp/matrix.c using your favorite text editor.

#include <stdio.h>

#include "mpi.h"

#define N 4 /* number of rows and columns in matrix */

MPI_Status status;

double a[N][N],b[N][N],c[N][N];

main(int argc, char **argv)

{

 int numtasks,taskid,numworkers,source,dest,rows,offset,i,j,k;

 struct timeval start, stop;

 MPI_Init(&argc, &argv);

 MPI_Comm_rank(MPI_COMM_WORLD, &taskid);

 MPI_Comm_size(MPI_COMM_WORLD, &numtasks);

 numworkers = numtasks-1;

	head: read the first few lines of the given text as an input

head -n 3 /tmp/matrix.c > /tmp/matrix_head.txt

The initial three lines of content will be directed into a new file named ‘/tmp/matrix_head.txt’.

If you use only head /tmp/matrix.c, the first ten lines are displayed.

	tail: read the final few lines of any text given to it as an input

tail -n 6 /tmp/matrix.c > /tmp/matrix_tail.txt

The last six lines of the file /tmp/matrix.c will be shown in /tmp/matrix_tail.txt.

	more: lets you view text files or other output in a scrollable manner. It displays the text one screenful at a time. Press <Space> to advance the screen.

more /tmp/matrix.c

All of the lines of the file /tmp/matrix.c will be displayed.

	less: is a program similar to more, but allows backward movement in the file as well as forward movement. Additionally, you may search for patterns using less.

less /tmp/matrix.c

The content of the file /tmp/matrix.c will be displayed on the terminal and you can navigate by pressing the up and down arrows.

	wc: word count

wc /tmp/matrix.c
 21 64 367 /tmp/matrix.c

Here, 21 is shown in the first column which represents the 21 lines, 64 words and 367 characters of the file /tmp/matrix.c.

It is possible to provide the output for multiple files by listing the name of each separated by a space. For example: wc file1 file2 file3.

In case you need to know the size of an image file in the current directory as well as the total for all of them, you can use the -c option like: wc -c *.jpg.

Part 2: Data Manipulation

Let’s apply commands to filter, sort, group, match, and replace data in the file /tmp/data.txt. You may paste the contents of the file into /tmp/data.txt using your favorite text editor.

NAME	START LOCATION	END LOCATION	cM	SNPs	Comments
:—	:—	:—	:—	:—	:—
Wendi	72017	5827331	12.43	1686	Match to Mom
Sheila	6514775	1500362	6.65	1089	Match to Mom
Michael	3793615	12596858	17.25	2785	Match to Dad or IBS
Robert	4090545	5115145	2.68	500	Mom but not me
Sheila	2514775	5600362	8.65	1189	Match to Mom

	sed: a special editor for modifying files, mostly used for substitutions

sed 's/Sheila/Linda/'/tmp/data.txt > /tmp/data.txt.bak

This replaces all occurrences of Sheila with Linda in the file /tmp/data.txt, and sends the output to data.txt.bak.

It is crucial to redirect the desired changes into another file in case you will need to review or compare to the original file.

	grep: search the input file(s) for lines containing a match to a given pattern. This utilizes regular expression [https://en.wikipedia.org/wiki/Regular_expression] patterns.

grep 'Match to Mom' /tmp/data.txt > /tmp/data.txt.2

The content of the file /tmp/data.txt.2 will include the lines that contain “Match to Mom”, taking the file /tmp/data.txt as an input.

	awk: to parse and manipulate tabular data. It operates on a line-by-line basis and iterates through the entire file.

awk '{print $1,$6;}' /tmp/data.txt > /tmp/data_tab.txt

It will display in columns: NAME (column 1) and Comments (column 6) in the /tmp/data_tab.txt file.

You may need to list only the rows that contain a value of cM greater than 10, then you run awk '$4 >10' /tmp/data.txt

If you want to know the rows that contain “Match to Mom”, then type awk '$4 ~/Match to Mom/'

	sort: is used to sort a file, arranging records in a particular order. By default, the sort command sorts file using ASCII.

sort -k 5n /tmp/data.txt

In this case, the data is going to be sorted according to SNPs because the option 5k (5th column) is set. It was set also n because they are numbers.

If you need to sort data in descending order, you will need to use the option -r, which means reverse, like this:sort -k 5n -r /tmp/data.txt.

In case you want to sort and remove duplicates, then use the option -u, like this: sort -u /tmp/data.txt.

If you want to sort a list to ordered by month name, then use the option -M, like this: sort -M /your/file.

Part 3: Working with a Collection of Files

Let’s work with the files that are located inside /tmp/test_files. Here are the instructions to create them.

user:test_files x0y$ ls -l
total 0
-rw-r--r-- 1 x0y user 0 Apr 10 09:37 test0.txt
-rw-r--r-- 1 x0y user 0 Apr 10 09:37 test1.txt
-rw-r--r-- 1 x0y user 0 Apr 10 09:37 test2.txt
-rw-r--r-- 1 x0y user 0 Apr 10 09:37 test3.txt
-rw-r--r-- 1 x0y user 0 Apr 10 09:37 test4.txt
-rw-r--r-- 1 x0y user 0 Apr 10 09:37 test5.txt
-rw-r--r-- 1 x0y user 0 Apr 10 09:37 test6.txt
-rw-r--r-- 1 x0y user 0 Apr 10 09:37 test66.txt

	find: to search for files based on various search criteria like permissions, user ownership, modification of date/time, size, etc.:

find . -name "*6*" -user x0y

In this case, the search happens in the current path (.) and is looking for those files that have the number 6 in their name, and were created by the user x0y.

If you want to search for a file(s) in which the filename has the characters “conf” and modified 7 days ago, then type: find / -name "*conf" -mtime 7.

If you want to find a file without searching over the entire network or mounted filesystems on your system, you would run: find / -name foo.bar -print -xdev.

Part 4: Comparing Differences Between the Contents of Files

For this section, we will use the files /tmp/test_file/test6.txt and /tmp/test_file/test66.txt. You may paste the contents of the two files into /tmp/test_file/ using your favorite text editor.

$ cat test6.txt
Weld I.D. Material Grade Segment Tested Accepted
==
004 CS AH38 100% No
009 CS AH30 50% No
099 CS AH40 50% No
100 CS AH67 100% Yes

$ cat test66.txt
Weld I.D. Material Grade Segment Tested Accepted
==
004 CS AH38 100% No
009 CS AH30 50% No
099 CS AH40 50% No
200 CS AH44 75% No
100 CS AH67 100% Yes

	diff: show the differences between two files’ contents

diff test6.txt test66.txt
 5a6
 > 200 CS AH44 75% No

In this case, the differences between the two files test6.txt and test66.txt are located in lines 5 and 6.

If you want to restrict the number of columns, you can run: diff --width=5 test6.txt test66.txt.

If you want to know if the files are different without interest in which lines are different, please run diff -q test6.txt test66.txt.

Part 5: Compressing and Extracting Files

To create files with extensions such as .tar, tar.gz, .tgz, .gz, or .bz2 use the commands tar (also useful to extract files), gzip, or bzip2.

	gzip: compresses the size of the given files. Whenever possible, each file is replaced by one with the extension .gz.:

gzip test66.txt

It will compress test66.txt file using the “gzip” command it will have as an output test66.gz.

	bzip2: bzip2 creates smaller archives than gzip but has a slower decompression time and higher memory use

bzip2 -k test66.txt

It will compress the file test66.txt. It will keep the uncompressed version and create the new file: test66.txt and test66.txt.bz2.

To decompress the file and remove the bz2 extension, please run bzip2 -d test66.txt.bz2.

	zip: compress the size of the given files. Whenever possible, each file is replaced by one with the extension .gz.

zip test.zip test66.txt test6.txt

It will compress test66.txt and test6.txt files into a directory called test.zip.

To compress a directory, please run zip -r squash.zip dir1. This will zip the whole directory dir1 into squash.dir.

To decompress, use unzip squash.zip; this unzips it in your current working directory.

	tar: bundle many files together into a single file on a single tape or disk. If you have more than 2 files then it is recommended to use tar instead of gzip or bzip2.

tar -cvf output.tar /dirname

It will compress the /dirname directory and create a file called a “tar ball” named output.tar.

To install tar, please run yum install tar or apt-get install tar, to extract the content of output.tar, please run tar -xvf output.tar.

File Permissions

The chmod command is used to control the access permissions for directories. We can use the octal notation to set permissions. To describe the octal notation, we can add permission values to obtain new, combined (octal) values.

Permission values:

	1 – able to execute (_x_)

	2 – able to write (_w_)

	4 – able to read (_r_)

The octal number is the sum of the permission values, for example:

	3 (1+2) – able to execute and write

	6 (2+4) – able to write and read

The meaning of the r, w, and x attributes is different:

	r - Allows the contents of the directory to be listed if the x attribute is also set.

	w - Allows files within the directory to be created, deleted, or renamed if the x attribute is also set.

	x - Allows a directory to be entered (i.e. cd dir).

There are three digits in a chmod permission. The first digit represents the permissions of the user, the second represents the group, and the third represents global permissions. So if a file has permissions 754, the user can read, write, and execute; the group can read and execute, while all other users can only read.

Permissions my be interpreted and set numerically (640) or symbolically (wr-).

Permission 600 is a common setting for data files that the owner wants to keep private. The owner may read and write a file. All others have no rights.

600 is equivalent to rw-------.

If you have another setting configured for your private data file, please run the chmod command to set it to 600.

sudo chmod filename 600

This table covers the common settings, those beginning with “7” are typically used with programs (since they enable execution) and the rest are for other kinds of files.

Value	Meaning	Description
:—	:—	:—
777	rwxrwxrwx	No restrictions on permissions. Anybody may do anything. Not a desirable setting.
755	rwxr-xr-x	The file’s owner may read, write, and execute the file. All others may read and execute the file. This setting is common for programs that are used by all users.
700	rwx------	The file’s owner may read, write, and execute the file. Nobody else has any rights. This setting is useful for programs that only the owner may use and must be kept private from others.
666	rw-rw-rw-	All users may read and write the file.
644	rw-r--r--	The owner may read and write a file, while all others may only read the file. A common setting for data files that everybody may read, but only the owner may change.
600	rw-------	The owner may read and write a file. All others have no rights. A common setting for data files that the owner wants to keep private (including SSH keys).

Here are some useful settings for directories:

Value	Meaning	Description
:—	:—	:—
777	rwxrwxrwx	No restrictions on permissions. Anybody may list, create, and delete files in the directory. Generally, this is not a secure setting.
755	rwxr-xr-x	The directory owner has full access. All others may list the directory, but cannot create files nor delete them. This setting is common for directories that you wish to share with other users.
700	rwx------	The directory owner has full access. Nobody else has any rights. This setting is useful for directories that only the owner may use and must be kept private from others.

Create Files

	Create the test_files directory inside /tmp with mkdir /tmp/test_files

	Navigate into the directory recently created with cd /tmp/test_files

	Create six files to test with for [0..5] in i; touch test$i.txt

	Create more files with touch test6.txt && touch test66.txt

Back to Managing Files

Miscellaneous Notes on Linux

The following topics may be more relevant for system adminstrators than users, but they are
essential to gaining a fuller understanding of the Linux environment users operate in.

	Working with Processes

	Services

	System Configuration

	Communication Protocols

	Task Manager (crontab, at)

Communication Protocols

Protocols are a set of rules or standards that define the communication between devices on a network.

	Generalities of a Service

	The ssh Protocol

	The scp Protocol

	The nfs Protocol

Generalities of a Service

A process is a running program at a particular instant of time.

The process refers to an opening of a Web Browser or any other visible program or action for the user, but this term also includes programs that are running in the background waiting to be called by the system. Those programs can be services that offer remote connection, sending of mail, or translation of IPs into readable URLs.

These services are identified by a number of ports defined by the Assigned Numbers RFC [https://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xhtml].

The configuration of services is in /etc/services and includes the name, the port that defines the service, and which transport protocol is used (UDP or TCP) for each one.

The ssh Protocol

This protocol enables secure connection to the SSH server on a remote machine.

	Installation of the package

By default, in CentOS 7, the SSH package comes installed, but if not, please run:

yum install openssh openssh-server openssh-clients openssl-libs

It installs the openssh package to enable SSH as a server and as a client.

If you need additional information about yum commands, you can visit this link [https://www.centos.org/docs/5/html/5.1/Deployment_Guide/s1-yum-useful-commands.htm].

	The default configuration file

The default configuration file and settings for the SSHD daemon is in /etc/ssh/sshd_config.

cp /etc/ssh/sshd_config /etc/ssh/sshd_config.ori

This creates a copy of the original configuration file in order to prevent damage or mistakes during a custom configuration.

Then, you can customize the configuration in the /etc/ssh/ssh_config file with these options:

Port 22
 PermitRootLogin without-password
 PermitRootLogin yes
 PasswordAuthentication yes
 ForwardAgent yes
 ForwardX11 yes

Furthermore, to have the ability to run the protocol with the name of the servers such as ssh server_name, create a file ~/.ssh/config, and customize it with:

Host shortcut_name
 HostName 0.1.2.3
 Port 22
 User x0y
 ServerAliveInterval 120
 IdentityFile ~/.ssh/my_key.pem

Then, you will be able to enter the server called shortcut_name with SSH by using:

ssh shortcut_name

	Restart the SSHD service

Once you make the configuration changes, you can save and close the file. For the changes to take effect, you should restart the SSH daemon.

systemctl restart sshd.service

This command is used in case the SSHD service is enabled. To check the current status of the service, please read more about the status of a service.

	Generate an SSH Key

To secure the transmission of information, SSH employs different types of data manipulation techniques that include forms of asymmetrical encryption such as an SSH key.

ssh-keygen

Press Enter to accept the default location and filename which is ~/.ssh/id_rsa. Then press Enter, then Enter again to not set a passphrase when prompted.

Make sure the SSH key was successfully created by checking the encrypted content at ~/.ssh/id_rsa.pub.

This file must have the permission 600. To check it please run ls -AhlF ~/.ssh.

Finally, to copy the SSH key to a server, please run ssh-copy-id -i ~/.ssh/id_rsa.pub user@server

The scp Protocol

This protocol allows files to be copied to, from, or between different hosts. It uses SSH for data transfer and provides the same authentication and same level of security as SSH.

	Copy the file remote_file.txt from a remote host to the local host

scp x0y@remotehost.univ.edu:remote_file.txt /some/local/directory

	Copy the file local_file.txt from the local host to a remote host directory

scp local_file.txt x0y@remotehost.univ.edu:/some/remote/directory

	Copy the directory local_directory from the local host to a remote host’s directory remote_directory

scp -r local_directory x0y@remotehost.Univ:/some/remote/directory/remote_directory

	Copy the file fr1.txt from remote host rh1.univ.edu to remote host rh2.univ.edu

scp x0y@rh1.univ.edu:/some/remote/directory/fr1.txt x0y@rh2.univ.edu:/some/remote/directory/

	Copy multiple files from a local directory to a remote host home directory

scp one_file.txt another_file.txt x0y@remotehost.univ.edu:

The nfs Protocol

To set up NFS mounts, we will need at least two Linux/Unix machines. Here we will be using two servers.

	NFS Server: Univserver.org with IP-192.168.0.100

	NFS Client: Univclient.org with IP-192.168.0.101

NFS Server

	Configure export directory

For sharing a directory with NFS, we need to make an entry in the /etc/exports configuration file. Let’s create a new directory named nfsshare in the / partition of the server.

Then, we need to make an entry in /etc/exports and restart the services to make our directory shareable in the network.

mkdir /nfsshare

vi /etc/exports
/nfsshare 192.168.0.101(rw,sync,no_root_squash)

service autofs restart

It displays a directory in the / partition named “nfsshare” which is being shared with client IP “192.168.0.101” with read and write privileges. You can also use the hostname of a server.

NFS Client

	Mount a shared directory on an NSF client

To mount a directory in our server to access it locally, we need to find out what shares are available on the remote server or NFS Server with showmount.

showmount -e 192.168.0.100
Export list for 192.168.0.100:
/nfsshare 192.168.0.101

This command shows that a directory named nfsshare is available at “192.168.0.100” to share with your server.

	To mount a shared NFS directory permanently, we can use following mount command:

vi /etc/fstab
192.168.0.100:/nfsshare /mnt nfs defaults 0 0

service autofs restart

With vi /etc/fstab, we are setting the IP:name_directory to be mounted, and it will be mounted on /mnt. You can verify it with mount | grep nfs.

Task Manager (crontab, at)

📝 Note: The majority of the following commands must be run by the superuser @root

Part 1: Using the crontab Command

The crontab command is used to schedule commands to be executed periodically. It allows tasks to be automatically run in the background at regular intervals.

That means that you can use crontab to automatically create backups, synchronize files, schedule updates, and much more.

The main configuration file for cron is /etc/crontab. If you view the content of it, it will display:

Example of job definition:
.---------------- minute (0 - 59)
| .------------- hour (0 - 23)
| | .---------- day of month (1 - 31)
| | | .------- month (1 - 12) OR jan,feb,mar,apr ...
| | | | .---- day of week (0 - 6) (Sunday=0 or 7) OR sun,mon,tue,wed,thu,fri,sat
| | | | |
* * * * * user-name command to be executed

	List programmed tasks

crontab -l

It will list the crontabs that are currently running on your environment, if you are a root user, you can list all the crons that the system has.

If you have not set any jobs, it will display a message such as crontab: no crontab for x0y.

	Edit the list of cronjobs

crontab -e

The option e let you edit a list of tasks. You can set some tasks using this format:

Every hour, at the minute 37, a copy will take place
37 * * * * root cp a /tmp/b

Every day at 5:23 compression will occur
23 5 * * * root zip f1.zip f1

#Every week on Sunday at 03:19 a copy will be made
19 3 * * 0 root scp metis.univ.edu:/tmp/files .

#Every month on day 6 at 00:23 minutes, a script will be run
23 0 6 * * root ./script

#run a cron job from a script for every Monday, Wednesday and Friday at 7:00 pm
0 19 * * 1,3,5 nohup /home/x0y/script.sh > /tmp/script.log 2>&1

Part 2: Using the at Command

Use at when you want to execute a command or multiple commands once at some future time.

at 4:55pm Friday
echo '5 p.m. meeting with Carol' | mail raithel
^D
Job c00ceb7fb.01 will be executed using /bin/sh

The at command takes input up to the end-of-file character (ctrl __D while at the beginning of a line). It reports the job number and informs you that it will use /bin/sh to execute the command. An email to raithel will be sent at 4:55pm on Friday with the Subject: ‘5 p.m. meeting with Carol’.

To program a script from now, you may add hours, minutes, or seconds with the + symbol, e.g.:

at now + 25 minutes
echo ^G > /dev/ttyp4
^D
Job c00ceb7fb.00 will be executed using /bin/sh

This script will notify you with a beep in 25 minutes.

	To get a list of your pending at jobs, enter atq. If you are superuser, atq shows you the pending at jobs of all users.

	To delete a job, enter atrm job_number where job_number is the job number returned by atq. The superuser can also remove other user’s jobs.

Services

Before checking the status of the SSH service, make sure you have the SSHD service enabled.

	Turning ON the SSHD service at boot time

systemctl enable sshd.service

To turn it off at boot time, please enter systemctl disable sshd.service.

	Check if a service is enabled or disabled

systemctl status sshd.service

It will display a message of active or inactive service.

	Reload SSHD configuration changes

systemctl start sshd.service
systemctl restart sshd.service
systemctl stop sshd.service
systemctl reload sshd.service

The start option will initiate the SSHD service, stop will stop it, and finally, restart or reload will refresh the new configurations.

System Configuration

	hostname: displays the name of the computer

hostname

It will show the current name of the machine.

To change the hostname, please type hostnamectl set-hostname <new_name>, and for additional configuration, the file is located at /etc/hostname.

	dmidecode: gives information about the hardware and detects if it is a virtual machine

dmidecode

The information includes manufacturer, model, serial number, asset tags, CPU sockets, PCI slots, DIMM slots, and other I/O port info detected by the BIOS.

	uname: displays system information about the Linux environment

uname -v

It will show you the version of the Linux kernel you are running.

If you want to know the hardware platform, such as x86_64 or 32-bits, please run uname -i. If you need more details about the software, please run uname -a.

	free: check the used and available space of physical memory and swap memory

free -g

It will display the size of the memory in GB (Gigabytes).

If you want to display the total line of the memory resource used, please run free -t or do cat /proc/meminfo.

	lscpu: shows CPU architecture information

lscpu

It will show the vendor of the CPU, as well as the GHz, cores per socket, etc.

You can view the information of your system CPU by viewing the content of the /proc/cpuinfo.

	top: shows statistical data related to the performance of a system and is updated every 5 seconds

top

It will display a real-time view of the performance data of all running processes in a system.

To sort by the use of CPU, type P, or if you want to sort by the use of memory, please type M, and u to view processes owned by a specific user. Press q to quit.

	iostat: lists CPU utilization, device utilization, and network file system utilization considered since the last reboot

iostat -C

It will display to columns: NAME and Comments in the /tmp/data_tab.txt file.

It will break the CPU utilization into user processes, system processes, I/O wait, and idle time.

	uptime: gives you the time for which the system has been up (or running)

uptime

It will display the current time, how long the system has been running, users currently logged on, and the system load averages for the past 1, 5, and 15 minutes.

description: >-
The definitions below are related to this document and are provided for quick
reference.

Glossary

Glossary

For other terms commonly used in research software engineering environments, please see the USRSE glossary [https://github.com/rseng/rse-glossary/blob/master/_data/terms.yml]

Terms

Term	Definition
:—	:—
Bash	A UNIX shell used for entering command-line executions. Included with most Linux distributions and macOS. Includes SSH capability.
Cluster	Servers, networked to execute batch jobs that require high core count, not possible on a single physical server
Hypervisor	Also known as a virtual machine monitor, a hypervisor is software/hardware that creates, runs, and manages virtual machines.
Instance	A virtual machine set up through OpenStack. See “Virtual Machine”.
OpenStack	A cloud operating system that controls large pools of compute, storage, and networking resources throughout a data center.
Project	The base unit of “ownership” in OpenStack. All resources in OpenStack should be owned by a specific project. In OpenStack Identity, a project must be owned by a specific domain.
Scheduler	Software responsible for the job, queue, and user management and accounting, e.g. Slurm
Virtual Machine	An operating system instance that runs on top of a hypervisor. Multiple virtual machines (VMs) can run at the same time on the same physical host.

Research software engineering terms

This was taken from the USRSE glossary [https://github.com/rseng/rse-glossary/blob/master/_data/terms.yml]

Name	Definition
:—	:—
research software engineer	Those who regularly use expertise in programming to advance research. https://us-rse.org/what-is-an-rse/
digital humanities	computational work and software for traditionally liberal arts oriented domains https://en.wikipedia.org/wiki/Digital_humanities
reproducibility	the extent to which a workflow or series of steps can be performed again as originally intended https://en.wikipedia.org/wiki/Reproducibility
sustainability	the ability for software, policy, or community to be maintained at a certain rate or level over a long period of time https://en.wikipedia.org/wiki/Sustainability
cyberinfrastructure	research environments that support advanced data services and computing beyond the scope of a single institution. https://en.wikipedia.org/wiki/Cyberinfrastructure
ask-cyberinfrastructure	A platform for high performance computing administrators and users to share knowledge and ask questions about cyberinfrastructure, available at ask.ci. https://ask.cyberinfrastructure.org/
exascale	a level of supercomputing intended to hit a quintillion calculations per second, and mirror processes in biology, climate, and physics. https://www.exascaleproject.org/what-is-exascale/
containers	encapsulated environments and namespaces that provide an abstraction for reproducible analyses and workflows. https://en.wikipedia.org/wiki/OS-level_virtualization
supercomputing (SC)	the Supercomputing conference that takes place annually, one of the largest for HPC enthusiasts in the world. http://supercomputing.org/
PEARC	The Practice and Advanced Experience in Research Computing Conference series (pronounced ‘perk’). https://www.pearc.org/
version control	a system that lets you keep every version of a file, in the case that you need to restore it later. Common version control online services like GitHub or GitLab provide you with a remote repository to interact with using git. https://git-scm.com/book/en/v1/Getting-Started
code reviews	the practice of looking over other’s code for possible bugs and improvements, and to ensure that work done is in scope with goals for the project. Code reviews are typically done by way of version control platforms when one person wants to merge their changes with the main project branch. This is called a ‘pull request’ on GitHub. https://google.github.io/eng-practices/review/reviewer/
continuous integration (ci)	the process of continually and regularly testing, building, and deploying your code to ensure that bugs don’t pop up. You can typically use a CI service integrated with your version control to automate this process. Examples of common CI services include CircleCI, GitHub CI, GitLab CI, Travis CI, and Semaphore. https://en.wikipedia.org/wiki/Continuous_integration
requirements	the minimal set of software and library dependencies (and their versions) for a software project. https://hackernoon.com/proper-software-requirements-101-32cf87e02a2f
repository	refers to a folder for a software project, commonly with a .git folder for version control https://help.github.com/en/github/creating-cloning-and-archiving-repositories/about-repositories
pair programming	working on a problem with another engineer, with typically one person sitting at the keyboard and the other watching and helping verbally. https://en.wikipedia.org/wiki/Pair_programming
cloud	refers to a network of remote servers, databases, and other resources for compute that can be available on demand. https://en.wikipedia.org/wiki/Cloud_computing
API	an application programming interface, or a set of functions exposed by a provider for some service. https://www.freecodecamp.org/news/what-is-an-api-in-english-please-b880a3214a82/
devops	a combination of development and operations that aims to improve communication between traditionall disparate teams. In practice, it means using fast feedback loops to deliver features, fixes, and updates more frequently. https://newrelic.com/devops/what-is-devops
code coverage	the percentage of a code base that is tested https://en.wikipedia.org/wiki/Code_coverage
unit testing	the practice of testing individual components or functions of a software base http://softwaretestingfundamentals.com/unit-testing/
integration testing	combination of functions (software units) to test as groups http://softwaretestingfundamentals.com/integration-testing
regression testing	testing to ensure that changes in code don’t break previously working functionality http://softwaretestingfundamentals.com/regression-testing
static analysis	examining source code for errors before it is run https://www.perforce.com/blog/sca/what-static-analysis-static-code-analysis
linting	analysis of source code for formatting and other language conventions. Linters can be run to validate, or can be used to automatically fix the file. https://en.wikipedia.org/wiki/Lint
pull request	putting your money where your mouth is and taking a shot at fixing an issue in a code base, and then opening a request for it’s review to merge into the main (usually master) branch https://help.github.com/en/github/collaborating-with-issues-and-pull-requests/about-pull-requests
IDE	means ‘Integrated development environment,’ and combines writing code, building and debugging into a single interface https://www.codecademy.com/articles/what-is-an-ide
TDD	means ‘test-driven development’, which is the idea of writing tests first then writing code that satisfies the tests https://en.wikipedia.org/wiki/Test-driven_development
acceptance testing	acceptance testing is a test conducted to determine if the requirements of a specification or contract are met. https://en.wikipedia.org/wiki/Acceptance_testing

Acronyms

Acronym	Definition
:—	:—
CLI	Command-Line Interface
DTN	Delay-Tolerant Network
GPU	Graphics Processing Unit
GUI	Graphical User Interface
IDE	integrated development environment
HPC	High-Performance Computing/Cluster
LDAP	Limited Lightweight Directory Access Protocol
MPI	Message Passing Interface
NFS	Network File System
S3	Simple Storage Service
SFTP	Secure/SSH File Transfer Protocol
SLURM	Simple Linux Utility for Resource Management (SLURM) is a batch scheduling tool used to submit your calculations to run on appropriate compute resources.
SSH	Secure Shell
VM	Virtual Machine

License

 GNU GENERAL PUBLIC LICENSE
 Version 3, 29 June 2007

Copyright (C) 2007 Free Software Foundation, Inc. http://fsf.org/ Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not allowed.

 Preamble

The GNU General Public License is a free, copyleft license for software and other kinds of works.

The licenses for most software and other practical works are designed to take away your freedom to share and change the works. By contrast, the GNU General Public License is intended to guarantee your freedom to share and change all versions of a program–to make sure it remains free software for all its users. We, the Free Software Foundation, use the GNU General Public License for most of our software; it applies also to any other work released this way by its authors. You can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General Public Licenses are designed to make sure that you have the freedom to distribute copies of free software (and charge for them if you wish), that you receive source code or can get it if you want it, that you can change the software or use pieces of it in new free programs, and that you know you can do these things.

To protect your rights, we need to prevent others from denying you these rights or asking you to surrender the rights. Therefore, you have certain responsibilities if you distribute copies of the software, or if you modify it: responsibilities to respect the freedom of others.

For example, if you distribute copies of such a program, whether gratis or for a fee, you must pass on to the recipients the same freedoms that you received. You must make sure that they, too, receive or can get the source code. And you must show them these terms so they know their rights.

Developers that use the GNU GPL protect your rights with two steps: (1) assert copyright on the software, and (2) offer you this License giving you legal permission to copy, distribute and/or modify it.

For the developers’ and authors’ protection, the GPL clearly explains that there is no warranty for this free software. For both users’ and authors’ sake, the GPL requires that modified versions be marked as changed, so that their problems will not be attributed erroneously to authors of previous versions.

Some devices are designed to deny users access to install or run modified versions of the software inside them, although the manufacturer can do so. This is fundamentally incompatible with the aim of protecting users’ freedom to change the software. The systematic pattern of such abuse occurs in the area of products for individuals to use, which is precisely where it is most unacceptable. Therefore, we have designed this version of the GPL to prohibit the practice for those products. If such problems arise substantially in other domains, we stand ready to extend this provision to those domains in future versions of the GPL, as needed to protect the freedom of users.

Finally, every program is threatened constantly by software patents. States should not allow patents to restrict development and use of software on general-purpose computers, but in those that do, we wish to avoid the special danger that patents applied to a free program could make it effectively proprietary. To prevent this, the GPL assures that patents cannot be used to render the program non-free.

The precise terms and conditions for copying, distribution and modification follow.

 TERMS AND CONDITIONS

	Definitions.

“This License” refers to version 3 of the GNU General Public License.

“Copyright” also means copyright-like laws that apply to other kinds of works, such as semiconductor masks.

“The Program” refers to any copyrightable work licensed under this License. Each licensee is addressed as “you”. “Licensees” and “recipients” may be individuals or organizations.

To “modify” a work means to copy from or adapt all or part of the work in a fashion requiring copyright permission, other than the making of an exact copy. The resulting work is called a “modified version” of the earlier work or a work “based on” the earlier work.

A “covered work” means either the unmodified Program or a work based on the Program.

To “propagate” a work means to do anything with it that, without permission, would make you directly or secondarily liable for infringement under applicable copyright law, except executing it on a computer or modifying a private copy. Propagation includes copying, distribution (with or without modification), making available to the public, and in some countries other activities as well.

To “convey” a work means any kind of propagation that enables other parties to make or receive copies. Mere interaction with a user through a computer network, with no transfer of a copy, is not conveying.

An interactive user interface displays “Appropriate Legal Notices” to the extent that it includes a convenient and prominently visible feature that (1) displays an appropriate copyright notice, and (2) tells the user that there is no warranty for the work (except to the extent that warranties are provided), that licensees may convey the work under this License, and how to view a copy of this License. If the interface presents a list of user commands or options, such as a menu, a prominent item in the list meets this criterion.

	Source Code.

The “source code” for a work means the preferred form of the work for making modifications to it. “Object code” means any non-source form of a work.

A “Standard Interface” means an interface that either is an official standard defined by a recognized standards body, or, in the case of interfaces specified for a particular programming language, one that is widely used among developers working in that language.

The “System Libraries” of an executable work include anything, other than the work as a whole, that (a) is included in the normal form of packaging a Major Component, but which is not part of that Major Component, and (b) serves only to enable use of the work with that Major Component, or to implement a Standard Interface for which an implementation is available to the public in source code form. A “Major Component”, in this context, means a major essential component (kernel, window system, and so on) of the specific operating system (if any) on which the executable work runs, or a compiler used to produce the work, or an object code interpreter used to run it.

The “Corresponding Source” for a work in object code form means all the source code needed to generate, install, and (for an executable work) run the object code and to modify the work, including scripts to control those activities. However, it does not include the work’s System Libraries, or general-purpose tools or generally available free programs which are used unmodified in performing those activities but which are not part of the work. For example, Corresponding Source includes interface definition files associated with source files for the work, and the source code for shared libraries and dynamically linked subprograms that the work is specifically designed to require, such as by intimate data communication or control flow between those subprograms and other parts of the work.

The Corresponding Source need not include anything that users can regenerate automatically from other parts of the Corresponding Source.

The Corresponding Source for a work in source code form is that same work.

	Basic Permissions.

All rights granted under this License are granted for the term of copyright on the Program, and are irrevocable provided the stated conditions are met. This License explicitly affirms your unlimited permission to run the unmodified Program. The output from running a covered work is covered by this License only if the output, given its content, constitutes a covered work. This License acknowledges your rights of fair use or other equivalent, as provided by copyright law.

You may make, run and propagate covered works that you do not convey, without conditions so long as your license otherwise remains in force. You may convey covered works to others for the sole purpose of having them make modifications exclusively for you, or provide you with facilities for running those works, provided that you comply with the terms of this License in conveying all material for which you do not control copyright. Those thus making or running the covered works for you must do so exclusively on your behalf, under your direction and control, on terms that prohibit them from making any copies of your copyrighted material outside their relationship with you.

Conveying under any other circumstances is permitted solely under the conditions stated below. Sublicensing is not allowed; section 10 makes it unnecessary.

	Protecting Users’ Legal Rights From Anti-Circumvention Law.

No covered work shall be deemed part of an effective technological measure under any applicable law fulfilling obligations under article 11 of the WIPO copyright treaty adopted on 20 December 1996, or similar laws prohibiting or restricting circumvention of such measures.

When you convey a covered work, you waive any legal power to forbid circumvention of technological measures to the extent such circumvention is effected by exercising rights under this License with respect to the covered work, and you disclaim any intention to limit operation or modification of the work as a means of enforcing, against the work’s users, your or third parties’ legal rights to forbid circumvention of technological measures.

	Conveying Verbatim Copies.

You may convey verbatim copies of the Program’s source code as you receive it, in any medium, provided that you conspicuously and appropriately publish on each copy an appropriate copyright notice; keep intact all notices stating that this License and any non-permissive terms added in accord with section 7 apply to the code; keep intact all notices of the absence of any warranty; and give all recipients a copy of this License along with the Program.

You may charge any price or no price for each copy that you convey, and you may offer support or warranty protection for a fee.

	Conveying Modified Source Versions.

You may convey a work based on the Program, or the modifications to produce it from the Program, in the form of source code under the terms of section 4, provided that you also meet all of these conditions:

a) The work must carry prominent notices stating that you modified it, and giving a relevant date.

b) The work must carry prominent notices stating that it is released under this License and any conditions added under section 7. This requirement modifies the requirement in section 4 to “keep intact all notices”.

c) You must license the entire work, as a whole, under this License to anyone who comes into possession of a copy. This License will therefore apply, along with any applicable section 7 additional terms, to the whole of the work, and all its parts, regardless of how they are packaged. This License gives no permission to license the work in any other way, but it does not invalidate such permission if you have separately received it.

d) If the work has interactive user interfaces, each must display Appropriate Legal Notices; however, if the Program has interactive interfaces that do not display Appropriate Legal Notices, your work need not make them do so.

A compilation of a covered work with other separate and independent works, which are not by their nature extensions of the covered work, and which are not combined with it such as to form a larger program, in or on a volume of a storage or distribution medium, is called an “aggregate” if the compilation and its resulting copyright are not used to limit the access or legal rights of the compilation’s users beyond what the individual works permit. Inclusion of a covered work in an aggregate does not cause this License to apply to the other parts of the aggregate.

	Conveying Non-Source Forms.

You may convey a covered work in object code form under the terms of sections 4 and 5, provided that you also convey the machine-readable Corresponding Source under the terms of this License, in one of these ways:

a) Convey the object code in, or embodied in, a physical product (including a physical distribution medium), accompanied by the Corresponding Source fixed on a durable physical medium customarily used for software interchange.

b) Convey the object code in, or embodied in, a physical product (including a physical distribution medium), accompanied by a written offer, valid for at least three years and valid for as long as you offer spare parts or customer support for that product model, to give anyone who possesses the object code either (1) a copy of the Corresponding Source for all the software in the product that is covered by this License, on a durable physical medium customarily used for software interchange, for a price no more than your reasonable cost of physically performing this conveying of source, or (2) access to copy the Corresponding Source from a network server at no charge.

c) Convey individual copies of the object code with a copy of the written offer to provide the Corresponding Source. This alternative is allowed only occasionally and noncommercially, and only if you received the object code with such an offer, in accord with subsection 6b.

d) Convey the object code by offering access from a designated place (gratis or for a charge), and offer equivalent access to the Corresponding Source in the same way through the same place at no further charge. You need not require recipients to copy the Corresponding Source along with the object code. If the place to copy the object code is a network server, the Corresponding Source may be on a different server (operated by you or a third party) that supports equivalent copying facilities, provided you maintain clear directions next to the object code saying where to find the Corresponding Source. Regardless of what server hosts the Corresponding Source, you remain obligated to ensure that it is available for as long as needed to satisfy these requirements.

e) Convey the object code using peer-to-peer transmission, provided you inform other peers where the object code and Corresponding Source of the work are being offered to the general public at no charge under subsection 6d.

A separable portion of the object code, whose source code is excluded from the Corresponding Source as a System Library, need not be included in conveying the object code work.

A “User Product” is either (1) a “consumer product”, which means any tangible personal property which is normally used for personal, family, or household purposes, or (2) anything designed or sold for incorporation into a dwelling. In determining whether a product is a consumer product, doubtful cases shall be resolved in favor of coverage. For a particular product received by a particular user, “normally used” refers to a typical or common use of that class of product, regardless of the status of the particular user or of the way in which the particular user actually uses, or expects or is expected to use, the product. A product is a consumer product regardless of whether the product has substantial commercial, industrial or non-consumer uses, unless such uses represent the only significant mode of use of the product.

“Installation Information” for a User Product means any methods, procedures, authorization keys, or other information required to install and execute modified versions of a covered work in that User Product from a modified version of its Corresponding Source. The information must suffice to ensure that the continued functioning of the modified object code is in no case prevented or interfered with solely because modification has been made.

If you convey an object code work under this section in, or with, or specifically for use in, a User Product, and the conveying occurs as part of a transaction in which the right of possession and use of the User Product is transferred to the recipient in perpetuity or for a fixed term (regardless of how the transaction is characterized), the Corresponding Source conveyed under this section must be accompanied by the Installation Information. But this requirement does not apply if neither you nor any third party retains the ability to install modified object code on the User Product (for example, the work has been installed in ROM).

The requirement to provide Installation Information does not include a requirement to continue to provide support service, warranty, or updates for a work that has been modified or installed by the recipient, or for the User Product in which it has been modified or installed. Access to a network may be denied when the modification itself materially and adversely affects the operation of the network or violates the rules and protocols for communication across the network.

Corresponding Source conveyed, and Installation Information provided, in accord with this section must be in a format that is publicly documented (and with an implementation available to the public in source code form), and must require no special password or key for unpacking, reading or copying.

	Additional Terms.

“Additional permissions” are terms that supplement the terms of this License by making exceptions from one or more of its conditions. Additional permissions that are applicable to the entire Program shall be treated as though they were included in this License, to the extent that they are valid under applicable law. If additional permissions apply only to part of the Program, that part may be used separately under those permissions, but the entire Program remains governed by this License without regard to the additional permissions.

When you convey a copy of a covered work, you may at your option remove any additional permissions from that copy, or from any part of it. (Additional permissions may be written to require their own removal in certain cases when you modify the work.) You may place additional permissions on material, added by you to a covered work, for which you have or can give appropriate copyright permission.

Notwithstanding any other provision of this License, for material you add to a covered work, you may (if authorized by the copyright holders of that material) supplement the terms of this License with terms:

a) Disclaiming warranty or limiting liability differently from the terms of sections 15 and 16 of this License; or

b) Requiring preservation of specified reasonable legal notices or author attributions in that material or in the Appropriate Legal Notices displayed by works containing it; or

c) Prohibiting misrepresentation of the origin of that material, or requiring that modified versions of such material be marked in reasonable ways as different from the original version; or

d) Limiting the use for publicity purposes of names of licensors or authors of the material; or

e) Declining to grant rights under trademark law for use of some trade names, trademarks, or service marks; or

f) Requiring indemnification of licensors and authors of that material by anyone who conveys the material (or modified versions of it) with contractual assumptions of liability to the recipient, for any liability that these contractual assumptions directly impose on those licensors and authors.

All other non-permissive additional terms are considered “further restrictions” within the meaning of section 10. If the Program as you received it, or any part of it, contains a notice stating that it is governed by this License along with a term that is a further restriction, you may remove that term. If a license document contains a further restriction but permits relicensing or conveying under this License, you may add to a covered work material governed by the terms of that license document, provided that the further restriction does not survive such relicensing or conveying.

If you add terms to a covered work in accord with this section, you must place, in the relevant source files, a statement of the additional terms that apply to those files, or a notice indicating where to find the applicable terms.

Additional terms, permissive or non-permissive, may be stated in the form of a separately written license, or stated as exceptions; the above requirements apply either way.

	Termination.

You may not propagate or modify a covered work except as expressly provided under this License. Any attempt otherwise to propagate or modify it is void, and will automatically terminate your rights under this License (including any patent licenses granted under the third paragraph of section 11).

However, if you cease all violation of this License, then your license from a particular copyright holder is reinstated (a) provisionally, unless and until the copyright holder explicitly and finally terminates your license, and (b) permanently, if the copyright holder fails to notify you of the violation by some reasonable means prior to 60 days after the cessation.

Moreover, your license from a particular copyright holder is reinstated permanently if the copyright holder notifies you of the violation by some reasonable means, this is the first time you have received notice of violation of this License (for any work) from that copyright holder, and you cure the violation prior to 30 days after your receipt of the notice.

Termination of your rights under this section does not terminate the licenses of parties who have received copies or rights from you under this License. If your rights have been terminated and not permanently reinstated, you do not qualify to receive new licenses for the same material under section 10.

	Acceptance Not Required for Having Copies.

You are not required to accept this License in order to receive or run a copy of the Program. Ancillary propagation of a covered work occurring solely as a consequence of using peer-to-peer transmission to receive a copy likewise does not require acceptance. However, nothing other than this License grants you permission to propagate or modify any covered work. These actions infringe copyright if you do not accept this License. Therefore, by modifying or propagating a covered work, you indicate your acceptance of this License to do so.

	Automatic Licensing of Downstream Recipients.

Each time you convey a covered work, the recipient automatically receives a license from the original licensors, to run, modify and propagate that work, subject to this License. You are not responsible for enforcing compliance by third parties with this License.

An “entity transaction” is a transaction transferring control of an organization, or substantially all assets of one, or subdividing an organization, or merging organizations. If propagation of a covered work results from an entity transaction, each party to that transaction who receives a copy of the work also receives whatever licenses to the work the party’s predecessor in interest had or could give under the previous paragraph, plus a right to possession of the Corresponding Source of the work from the predecessor in interest, if the predecessor has it or can get it with reasonable efforts.

You may not impose any further restrictions on the exercise of the rights granted or affirmed under this License. For example, you may not impose a license fee, royalty, or other charge for exercise of rights granted under this License, and you may not initiate litigation (including a cross-claim or counterclaim in a lawsuit) alleging that any patent claim is infringed by making, using, selling, offering for sale, or importing the Program or any portion of it.

	Patents.

A “contributor” is a copyright holder who authorizes use under this License of the Program or a work on which the Program is based. The work thus licensed is called the contributor’s “contributor version”.

A contributor’s “essential patent claims” are all patent claims owned or controlled by the contributor, whether already acquired or hereafter acquired, that would be infringed by some manner, permitted by this License, of making, using, or selling its contributor version, but do not include claims that would be infringed only as a consequence of further modification of the contributor version. For purposes of this definition, “control” includes the right to grant patent sublicenses in a manner consistent with the requirements of this License.

Each contributor grants you a non-exclusive, worldwide, royalty-free patent license under the contributor’s essential patent claims, to make, use, sell, offer for sale, import and otherwise run, modify and propagate the contents of its contributor version.

In the following three paragraphs, a “patent license” is any express agreement or commitment, however denominated, not to enforce a patent (such as an express permission to practice a patent or covenant not to sue for patent infringement). To “grant” such a patent license to a party means to make such an agreement or commitment not to enforce a patent against the party.

If you convey a covered work, knowingly relying on a patent license, and the Corresponding Source of the work is not available for anyone to copy, free of charge and under the terms of this License, through a publicly available network server or other readily accessible means, then you must either (1) cause the Corresponding Source to be so available, or (2) arrange to deprive yourself of the benefit of the patent license for this particular work, or (3) arrange, in a manner consistent with the requirements of this License, to extend the patent license to downstream recipients. “Knowingly relying” means you have actual knowledge that, but for the patent license, your conveying the covered work in a country, or your recipient’s use of the covered work in a country, would infringe one or more identifiable patents in that country that you have reason to believe are valid.

If, pursuant to or in connection with a single transaction or arrangement, you convey, or propagate by procuring conveyance of, a covered work, and grant a patent license to some of the parties receiving the covered work authorizing them to use, propagate, modify or convey a specific copy of the covered work, then the patent license you grant is automatically extended to all recipients of the covered work and works based on it.

A patent license is “discriminatory” if it does not include within the scope of its coverage, prohibits the exercise of, or is conditioned on the non-exercise of one or more of the rights that are specifically granted under this License. You may not convey a covered work if you are a party to an arrangement with a third party that is in the business of distributing software, under which you make payment to the third party based on the extent of your activity of conveying the work, and under which the third party grants, to any of the parties who would receive the covered work from you, a discriminatory patent license (a) in connection with copies of the covered work conveyed by you (or copies made from those copies), or (b) primarily for and in connection with specific products or compilations that contain the covered work, unless you entered into that arrangement, or that patent license was granted, prior to 28 March 2007.

Nothing in this License shall be construed as excluding or limiting any implied license or other defenses to infringement that may otherwise be available to you under applicable patent law.

	No Surrender of Others’ Freedom.

If conditions are imposed on you (whether by court order, agreement or otherwise) that contradict the conditions of this License, they do not excuse you from the conditions of this License. If you cannot convey a covered work so as to satisfy simultaneously your obligations under this License and any other pertinent obligations, then as a consequence you may not convey it at all. For example, if you agree to terms that obligate you to collect a royalty for further conveying from those to whom you convey the Program, the only way you could satisfy both those terms and this License would be to refrain entirely from conveying the Program.

	Use with the GNU Affero General Public License.

Notwithstanding any other provision of this License, you have permission to link or combine any covered work with a work licensed under version 3 of the GNU Affero General Public License into a single combined work, and to convey the resulting work. The terms of this License will continue to apply to the part which is the covered work, but the special requirements of the GNU Affero General Public License, section 13, concerning interaction through a network will apply to the combination as such.

	Revised Versions of this License.

The Free Software Foundation may publish revised and/or new versions of the GNU General Public License from time to time. Such new versions will be similar in spirit to the present version, but may differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Program specifies that a certain numbered version of the GNU General Public License “or any later version” applies to it, you have the option of following the terms and conditions either of that numbered version or of any later version published by the Free Software Foundation. If the Program does not specify a version number of the GNU General Public License, you may choose any version ever published by the Free Software Foundation.

If the Program specifies that a proxy can decide which future versions of the GNU General Public License can be used, that proxy’s public statement of acceptance of a version permanently authorizes you to choose that version for the Program.

Later license versions may give you additional or different permissions. However, no additional obligations are imposed on any author or copyright holder as a result of your choosing to follow a later version.

	Disclaimer of Warranty.

THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

	Limitation of Liability.

IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

	Interpretation of Sections 15 and 16.

If the disclaimer of warranty and limitation of liability provided above cannot be given local legal effect according to their terms, reviewing courts shall apply local law that most closely approximates an absolute waiver of all civil liability in connection with the Program, unless a warranty or assumption of liability accompanies a copy of the Program in return for a fee.

 END OF TERMS AND CONDITIONS

 How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest possible use to the public, the best way to achieve this is to make it free software which everyone can redistribute and change under these terms.

To do so, attach the following notices to the program. It is safest to attach them to the start of each source file to most effectively state the exclusion of warranty; and each file should have at least the “copyright” line and a pointer to where the full notice is found.

<one line to give the program’s name and a brief idea of what it does.> Copyright (C)

This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program. If not, see http://www.gnu.org/licenses/.

Also add information on how to contact you by electronic and paper mail.

If the program does terminal interaction, make it output a short notice like this when it starts in an interactive mode:

<program> Copyright (C) <year> <name of author>
This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
This is free software, and you are welcome to redistribute it
under certain conditions; type `show c' for details.

The hypothetical commands show w' andshow c’ should show the appropriate parts of the General Public License. Of course, your program’s commands might be different; for a GUI interface, you would use an “about box”.

You should also get your employer (if you work as a programmer) or school, if any, to sign a “copyright disclaimer” for the program, if necessary. For more information on this, and how to apply and follow the GNU GPL, see http://www.gnu.org/licenses/.

The GNU General Public License does not permit incorporating your program into proprietary programs. If your program is a subroutine library, you may consider it more useful to permit linking proprietary applications with the library. If this is what you want to do, use the GNU Lesser General Public License instead of this License. But first, please read http://www.gnu.org/philosophy/why-not-lgpl.html.

description: ‘If you need any help, please follow any of the following channels.’

Support

Support and Facilitation

If you need any help, please follow any of the following channels.

TeamDynamix Ticket

	Submit a support ticket through TeamDynamix [https://cofc.teamdynamix.com/]​

	​Service requests [https://cofc.teamdynamix.com/TDClient/Requests/ServiceDet?ID=35085]. These include inquiries about accounts, projects and services

	Request account

	Seek consultation about teaching/research projects

	Inquire about operations

	Ask about documentation

	​Incident requests [https://cofc.teamdynamix.com/TDClient/Requests/ServiceDet?ID=35086]. These include any problems you encounter during any HPC operations

	Inability to access the cluster or individual nodes

	Inability to run calculations

	Inability to access data

E-Mail

	If TeamDynamix is inaccessible, please email HPC support directly or

If seeking support about a problem via e-mail, it would be helpful to follow this format when possible:

	Description of the problem

	Actual steps to reproduce the problem

	How reproducible is the problem?

	<Version>-<Release number> of problem (if applicable)

	Additional Information

Contact Campus ServiceDesk

	Call the campus helpdesk at 853-953-3375 during these hours

	Mon - Fri 7:30 AM - 10:00 PM

	Sat - Sun 2:00 PM - 10:00 PM

	Or email the campus helpdesk or

Office Visit

	Stop by Bell Building, Room 520 during normal work hours (M-F, 8AM-5PM)

We recognize that there are a lot of hurdles that keep people from using HPC resources. We have experience facilitating research computing for experts and new users alike. So, please feel free to contact us and we will work to get you started.

description: ‘If you need any help, please follow any of the following channels.’

Support

Support and Facilitation

If you need any help, please follow any of the following channels.

	Submit a support ticket through TeamDynamix [https://cofc.teamdynamix.com]

	Service requests [https://cofc.teamdynamix.com/TDClient/Requests/ServiceDet?ID=35085]. These include inquiries about accounts, projects and services

	Request account

	Seek consultation about teaching/research projects

	Inquire about operations

	Ask about documentation

	Incident requests [https://cofc.teamdynamix.com/TDClient/Requests/ServiceDet?ID=35086]. These include any problems you encounter during any HPC operations

	Inability to access the cluster or individual nodes

	Inability to run calculations

	Inability to access data

	If TeamDynamix is inaccessible, please email HPC support directly or

	Email the campus helpdesk or

	Call the campus helpdesk at 853-953-3375 during these hours

	Mon - Fri 7:30 AM - 10:00 PM

	Sat - Sun 2:00 PM - 10:00 PM

	Stop by Bell Building, Room 520 during normal work hours (M-F, 8AM-5PM)

We recognize that there are a lot of hurdles that keep people from using HPC resources. We have experience facilitating research computing for experts and new users alike. So, please feel free to contact us and we will work to get you started.

Contributing to docs

This documentation was originally written and provided by Wendi K. Sapp and subsequently adapted for the purposes of CofC’s HPC initiatives. You can contribute to improving and expanding this documentation by

	Giving feedback about the usefulness of each page (See “Was this page helpful?” at the bottom of each page)

	Joining in as a collaborator or contributor

	Submitting comments, corrections, issues to the repository issue tracker [https://github.com/hpc-cofc/documentation/issues] or emailing.

If you want to contribute as a ‘collaborator’ or ‘contributor’, you’ll need to use Git/GitHub and Markdown.

Step 1. Are you familiar with Git/GitHub?

	Git Basics

	Git and Atom: GitHub

Step 2. Are you familiar with Markdown?

	Markdown Guide [https://github.com/hpc-cofc/documentation/tree/3959ee94c4a0ad74171c3061d2e06f02986ea22a/contributing/contributing/markdown-guide]

Step 3. Contribute!

	Clone the repository, make changes, add content, and push your changes for approval.

Markdown Guide

Markdown Guide

This guide is inspired by GitHub’s “Mastering Markdown” Guide, found here [https://guides.github.com/features/mastering-markdown/].

Background

Markdown is a simple way to format text for display on a website.

Markdown Syntax

Headers

This is an <h1> tag
This is an <h2> tag
This is an <h6> tag

This is an \ tag

This is an \ tag

This is an \ tag

Emphasis (Bold, Italic)

This text is italic
This is also italic

This text is italic This is also italic

This text is bold
__This is also bold__

This text is bold This is also bold

You **can** also combine them

You can also combine them

Lists

Unordered

* Item 1
* Item 2
 * Item 2a
 * Item 2b

	Item 1

	Item 2

	Item 2a

	Item 2b

Ordered

You do not need to manually number your ordered list. Subsequent items in the list will be automatically numbered if you use - instead of numbers.

1. Item 1
- Item 2
- Item 3
 1. Item 3a
 - Item 3b

	Item 1

	Item 2

	Item 3

	Item 3a

	Item 3b

Combined

1. Item 1
- Item 2
 - Sub-item
 - Sub-item

	Item 1

	Item 2

	Sub-item

	Sub-item

Task Lists

- [x] first, choose an ordered or unordered list style, then add checkboxes
- [x] completed item
- [] incomplete item

	[x] first, choose an ordered or unordered list style, then add checkboxes

	[x] completed item

	[] incomplete item

Tables

You can create tables by assembling a list of words and dividing them with hyphens - (for the first row), and then separating each column with a pipe |:

Column 1 Header	Column 2 Header
Content from cell 1 | Content from cell 2
Content in the first column | Content in the second column

First Header	Second Header
:—	:—
Content from cell 1	Content from cell 2
Content in the first column	Content in the second column

Strikethrough

~~strikethrough text like this~~

~~strikethrough text like this~~

Images

Image syntax allows for alternative text. The format is ![alt text](URL). The URL can be a relative project path or an external website URL.

![Org Logo](../logo_square.png)
![Org Logo](https://raw.githubusercontent.com/wendikristine/documentation-template/master/logo_square.png)

[image: ../../_images/logo_square.png]Org Logo

[image: ../../_images/logo_square1.png]Org Logo

Links

Links are created automatically in most cases (and always on Github). Or, you can specify a link with alternative text.

http://github.com - automatic!

[GitHub](http://github.com) link

GitHub [http://github.com] link

Block Quotes

> "Not enough blinky lights."
> - Henry Neeman, SiPE 2018

“Not enough blinky lights.”~ Henry Neeman, SiPE 2018

Code

I think you should use an
`<addr>` element here instead.

I think you should use an<addr> element here instead.

mkdir lesson06/
cd lesson06

Markdown supports language-specific syntax highlighting.

function fancyAlert(arg) {
 if(arg) {
 $.facebox({div:'#foo'})
 }
}

function fancyAlert(arg) {
 if(arg) {
 $.facebox({div:'#foo'})
 }
}

You can also simply indent your code by four spaces:

function fancyAlert(arg) {
 if(arg) {
 $.facebox({div:'#foo'})
 }
}

Horizontal Rule

Emoji

GitHub supports emoji! :sparkles: :camel: :boom:

To see a list of every image we support, check out the Emoji Cheat Sheet.

Git Version Control

Git, like other version control (VC) software/system (see a Wikipedia list [https://en.wikipedia.org/wiki/List_of_version_control_software]), tracks changes to a file system over time. It is typically used in software development but can be used to monitor changes in any file.

Git - a version control system that records the changes to a file or files which allows you to return to a previous version

📝 Note: This tutorial uses only the command line. After you have learned the basics of Git, you can explore a Git workflow in the command line, with the Atom text editor [https://github.com/hpc-cofc/documentation/tree/9ce28a07e17b80486e3590c45bb3909783c7cae4/git-version-control/git-workflow], and also common Git scenarios.

Git Resources

When we talk about Git, we say that a repository stores files. This term means that you have a folder that is currently being tracked by Git. It is common, although optional, to use one of the Git repository (repo) services (GitHub, GitLab, BitBucket, etc.). You could easily set up Git tracking on your local machine only, but one of the perks to using Git is that you can share your files with others and a team can edit files collaboratively. The ability to collaborate is one of the many reasons why hosted Git repos are so popular.

Repository - the Git data structure which contains files and folders, as well as how the files/folders have changed over time

Accessing GitHub

	In your browser, navigate to https://github.com/ and Sign in using your credentials. If you need to create an account, click Sign up.

	To create a new repository, find and click on the green button at the top of the window that says New.

	Type a name for your new repository. Then select Public or Private. All other options are optional and will not have any effect on this tutorial.

	Notice that GitHub has provided instructions to perform Git setup and initialization of your repository. We will follow those instructions in the next section.

	(Optional) Before continuing, consider adding your SSH key to your GitHub profile so you are not prompted for credentials after every commit. To add your public SSH key to GitHub:

	Click on your user image in the top-right of the GitHub window.

	Select Settings.

	On the left, click SSH and GPG keys, then New SSH key.

	Paste your public SSH key in the box, provide a title, and save by clicking Add SSH key.

Local Machine Setup

	First, use the command line to see if Git is installed. (Windows users may check their list of currently installed programs.)

git --version

	To install or update Git using your package manager:

	CentOS, RedHat:

sudo yum install git
sudo yum update git

	Debian, Ubuntu:

sudo apt-get install git
sudo apt-get update git

	MacOS, use Homebrew [https://brew.sh/]:

/usr/bin/ruby -e "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/master/install)"
brew install git
brew upgrade git

	Windows: download Git for Windows [https://gitforwindows.org/] and install it. Also, this tutorial utilizes a Bash command line interface, therefore, you should use Git Bash, which is a part of the Git installation package for Windows.

	Setup Git with your access credentials to GitHub with the following commands:

git config --global user.name "your_username"
git config --global user.email "your_email_address@example.com"

	You can review the information that you entered during set-up: git config --global --list

	Now, navigate to the location where you’d like to place your repository. For example:

cd /home/user/projects/

Option 1: Configure a NEW repository

	Follow the instructions provided by GitHub:

echo "# testing" >> README.md
git init

These commands will create a file called README.md and add a line to it that says “# testing”. Then, git init tells Git to initialize this repository and start tracking changes.

Option 2: Clone an existing repository

	Clone the repository. A new folder is created, and Git starts tracking.

Clone - is the equivalent of making a local copy on your computer

git clone git@github.com:username/example-project.git
cd example-project/

In the above command, change “username” to your username and “example-project” to the name of your repository.

Adding, Committing, and Pushing changes

	The next three steps consist of adding, committing, and pushing from your local machine to GitHub.

Add - includes the added files in the content that you want to saveCommit - creates a “snapshot” of the repository at that moment and uses the changes from the “added” filesPush - moves/uploads the local changes (or snapshot) to the remote GitHub repository

git add README.md
git commit -m "add README"
git push -u origin master

	(Optional) If you like, you can refresh your browser page, and you can see that the README.md file is now in your repository.

Using Branches to Make Changes

Branches are created as a way to separate content that is still under development. One way to think about a branch is as a copy of the content of a repository at a point in time. You’ll then make your changes on the copy before then integrating the changes back into the original. For example, if you were using your GitLab repo to host a website, you probably would not want incomplete content shown to those who would visit your site. Instead, you can create a branch, make edits to the files there, then merge your development branch back into the master branch, which is the default branch. Additionally, branches are commonly used when multiple individuals work out of a single repository.

Branch - a version of the repository that splits from the primary versionMerge - using the changes from one branch and adding them to another

	A branch checkout enables you to make changes to files without changing the content of the master branch. To create and checkout a branch called “add-readme”:

git checkout add-readme

Checkout - Git command to change branches

	Now we edit the README.md file to add a description of the repository. The file needs to be opened with a text editor (nano, vim, emacs, etc.).

vi README.md

	Add your description. README.md is a markdown file. If you do not know how to use markdown, don’t worry. Basic text works, too. However, if you would like to learn markdown, it is simple. Use this GitHub guide [https://guides.github.com/features/mastering-markdown/].

	To type in vi, press i for insert. Now you can add content.

	To save your changes and exit vi, press <esc> to leave editing, then type :wq which writes (saves) and quits.

	As before, we need to add, commit, and push the changes to the GitLab repository.

git add README.md
git commit -m "added a description of the repository"
git push --set-upstream origin add-readme

	In future pushes, you can simplify the last command by typing only git push. However, the first time you push to a new branch, you have to tell GitHub that you have created a new branch on your computer and the changes that you are pushing should be pushed to a new remote branch called add-readme.

Merging Content from a Development Branch to the Master Branch

After completing the previous section, we have two branches: add-readme and master. We are ready to move the add-readme content to the master branch.

You can create a merge request using the GitHub GUI (website).

	When viewing the repository on the GitHub website, click the button New pull request.

	Select the “base” branch. This will be master. Then select the “compare” branch: add-readme.

Notice the arrow between the two selection boxes. The master branch will “pull” the new content from the add-readme branch.

	Now click Create pull request. In our case, we own this repository so we can approve the Pull request and merge the content. If we did not own the repository, a request would be sent to the owner.

External Reference Material

	Git Glossary [https://git-scm.com/docs/gitglossary]

Sometimes Git repository sites use different terminology, i.e., merge request vs. pull request. To reference the glossaries:

	GitLab Glossary [https://docs.gitlab.com/ee/university/glossary/]

	GitHub Glossary [https://help.github.com/articles/github-glossary/]

	BitBucket Glossary [https://www.atlassian.com/git/glossary/terminology]

Ready to Learn More?

	Git and Atom Workflow: GitHub

	Git and Atom Workflow: GitLab

	Git in the Command Line

	Git Scenarios

Git in the Command Line

There are many reasons one would prefer to work from the command line. Regardless of your reasons, here is how to use Git/GitHub using only command line tools.

[image: ../../_images/git-workflow-steps.png] [https://github.com/hpc-cofc/documentation/tree/98fafe98f5b7a6c3a3b5c1de7b616ab275fbe639/git-version-control/screenshots/git-workflow-steps.png]

Jump to a Section:

	Setup

	Checkout

	Edit

	Add

	Commit

	Push

	Merge

This guide is adapted from GitLab’s documentation [https://docs.gitlab.com/ee/gitlab-basics/start-using-git.html].

It is assumed that users of this guide understand basic Git/version control principles. To read more, visit this page [https://git-scm.com/].

Setup

	First, use the command line to see if Git is installed.

git --version

	To install or update Git using your package manager:

	CentOS, RedHat:

sudo yum install git
sudo yum update git

	Debian, Ubuntu:

sudo apt-get install git
sudo apt-get update git

	MacOS, use Homebrew [https://brew.sh/]:

/usr/bin/ruby -e "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/master/install)"
brew install git
brew upgrade git

	Windows: download Git for Windows [https://gitforwindows.org/] and install it.

	Setup Git with your access credentials to GitHub with the following commands:

git config --global user.name "your_username"
git config --global user.email "your_email_address@example.com"

	You can review the information that you entered during set-up: git config --global --list

	(Optional) Consider adding your SSH key to your GitLab profile so you are not prompted for credentials after every commit. To add your public SSH key to GitLab:

	Click on your user image in the top-right of the GitHub window.

	Select Settings.

	On the left, click SSH and GPG keys, then New SSH key.

	Paste your public SSH key in the box, provide a title, and save by clicking Add SSH key.

	Clone an existing repository. In GitLab, this information is found on the “Overview” page of the repository.

git clone git@gitlab.com:username/example-project.git

Checkout

	If you have already cloned the repository but are returning to your local version after a while, you’ll want to make sure your local files are up to date with the branch. You can pull updates from master or branch_name.

git pull origin branch_name

	You need to create a new branch or checkout an existing branch that can later be merged into the master branch. When naming branches, try to choose something descriptive.

	To create a branch: git checkout -b branch_name

	To list existing branches: git branch -r

	To checkout an existing branch: git checkout --track origin/branch_name or git checkout branch_name

	Note: You may only have one branch checked out at a time.

Edit

	Make edits to the files with your favorite text editor. Save your changes.

Add

	Git places “added” files in a staging area as it is waiting for you finalize your changes.

git add --all

Commit

	When you have added (or staged) all of your changes, committing them prepares them for the push to the remote branch.

git commit -m "descriptive text about your changes"

Push

	After committing the edits, you’ll want to push the changes to GitLab. If the following produces an error, see below the code snippet for common solutions. The structure of this command is git push <remote> <branch>.

git push

	Upstream error: git push --set-upstream origin branch_name or git push -u origin branch_name

Merge

At this time, GitLab does not natively support submissions for merge requests via the command line.

You can send a merge request using the GitLab GUI.

	When viewing the repository on the GitHub website, click the button New pull request.

	Select the “base” branch. This will be master. Then select the “compare” branch: add-readme.

	Now click Create pull request.

Git Scenarios

This document includes common Git scenarios and how to deal with them.

Updating a branch with new content from the master branch

If you have been working on a development branch for a while you might like to update it with the most recent changes from the master branch. There is a simple way to include the updates to the master branch into your development branch without causing much chaos.

First, checkout your development branch. Then, perform a merge from master but add the “no fast forward” tag. This will ensure that HEAD stays with your development branch.

git checkout development
git merge --no-ff master

Resolve any conflicts and push your changes.

Configuring Git: local vs global

When you set up Git with the git config --global ... commands, you are telling your local machine that this is the set of credentials that should be used across your directories. If you have multiple projects for which you need unique credentials, you can set a particular project folder with different Git credentials by changing global to local. For example, you may contribute to projects in GitHub and GitLab. You may navigate to the local repository and set local configuration parameters. See below:

cd projects/

ls
GitHub/ GitLab/

cd GitHub/python/
git config --local user.name "Jane Doe"
git config --local user.email "doej@example.com"

Now, my machine will use global configurations everywhere except for the /project/GitHub/python/ repository.

Undoing a change

Changes since your last commit

You have previously committed some files and now you’ve edited a file and saved your changes. However, you now decide you do not want keep the changes that you’ve made. How can you revert it back to the way it was at your last commit?

$ git status
Changes not staged for commit:
 (use "git add <file>..." to update what will be committed)
 (use "git checkout -- <file>..." to discard changes in working directory)

 modified: README.md

The git status command output provides a method for discarding changes since your last commit.

$ git checkout -- README.md
$ git status
On branch master
Changes to be committed:
 (use "git reset HEAD <file>..." to unstage)
 renamed: README.md -> read-me

📝 Note: Before using the above commands to reverse your changes, be sure you do not want to keep them. After the commands are run, the file(s) will be overwritten and any uncommitted changes will not be recoverable.

Reverting to a previous commit

If you are working on a new feature and after a commit you realize that you have introduced a catastrophic bug, you can use git reset ac6bc6a2 (each commit has a unique identification number). This command will change where the HEAD pointer is located. For example, if you are on the master branch and have submitted three new commits, the HEAD points to your most recent commit. Using the git reset --- command will keep the information in the recent commits, but HEAD will be moved to the specified commit.

To find the unique identification number of the commits in your branch, type git log --pretty=format:"%h %s" --graph to provide a list of recent commits as well as a visual graph of changes.

Amending a commit

Let’s say that you have just completed several changes, staged (added), and committed them. As you look at one file, you see a typo. You could simply fix the typo, add, and commit again, or you could use the --amend tag so that the new changes (your typo fix) can be included in your previous commit. Using this can keep your commit history uncluttered by removing commit messages such as “forgot to add a file” or “fixed a typo.” Here is an example of a forgotten file amended commit:

git commit -m 'initial commit'
git add forgotten_file
git commit --amend

A commit message prompt appears and you can either keep the original commit message or modify it.

Undoing a merge

Perhaps you thought you had checked out your development branch but you were, in fact, on the master branch. Then you merged a topic branch into master by mistake. How do you undo the merge?

If you just want to take a step back to before you entered the merge command, you can use git merge --abort. This is usually a safe command as long as you do not have any uncommitted changes.

If you need something a little more robust, you can use git reset --hard HEAD. This command is used to perform a “start over” in your repository. It will reset your repository to the last commit.

Collaboration Etiquette

Commit messages

When multiple people are working in the same repository, the number of commits can be anywhere between a few or several thousands depending on the size of your development team. Using clear, descriptive commit messages can help “integration managers” merge content and, perhaps more importantly, search for and find commits that have introduced a bug.

Another recommendation by the author of “Pro Git” says, “try to make your changes digestible — don’t code for a whole weekend on five different issues and then submit them all as one massive commit on Monday.”

I do not want Git to track a particular file/directory

If there are files/folders in your repository that you do not want Git to track, you can add them to a .gitignore file. Here is an example .gitignore:

ignore all .a files
*.a

but do track lib.a, even though you're ignoring .a files above
!lib.a

only ignore the TODO file in the current directory, not subdir/TODO
/TODO

ignore all files in the build/ directory
build/

ignore all .pdf files in the doc/ directory and any of its subdirectories
doc/**/*.pdf

Works Cited

	Chacon, Scott, and Ben Straub. Pro Git: Everything You Need to Know About Git. Apress, 2nd Edition (2014).

Git and Atom: GitHub

GitHub

GitHub is a popular platform to share code, store software solutions, and host documentation.

Project owners control access to GitHub repositories. You may log in and create your projects and repositories, and share them with others.

[image: ../../_images/git-workflow-steps.png] [https://github.com/hpc-cofc/documentation/tree/ff3d00a3bf1bd1d07b2e9bb5fe49fd6df827a978/git-version-control/screenshots/git-workflow-steps.png]

Jump to a Section:

	Setup

	Checkout

	Edit

	Add

	Commit

	Push

	Merge

Would you prefer not to use the Atom Text Editor? We also have documentation for Git in the command line.

It is assumed that users of this guide understand basic Git/version control principles. To learn more about Git basics, visit this page.

Setup

This section covers the setup procedures for Atom and Git.

Atom Text Editor Setup

While there are many text editors to choose from, Atom is recommended due to its ability to be customized and integrated with GitHub/Git.

Install Atom: https://atom.io/

Atom has several packages which enhance the user experience and some of them you’ll need for the workflow. The packages can be installed by entering the Settings screen and choosing Install. There are thousands of packages, so try some out and have fun.

	Necessary Packages:

	git-plus (integrates Git)

	git-checkout (allows checking out remote branches within Atom)

	Optional but Recommended Packages:

	linter (aids in code validation, will also need linter package for each language)

	minimap (displays thumbnail version of document along with your location within it)

	todo-show (provides visuals for TODO and FIXME tags)

	Navigate to the GitHub repository in your web browser. For this example, we’ll use the user-documentation repository. Copy the SSH address to your machine’s clipboard.

[image: https://github.com/hpc-cofc/documentation/tree/ff3d00a3bf1bd1d07b2e9bb5fe49fd6df827a978/git-version-control/screenshots/git-repo-ssh-address.png] [https://github.com/hpc-cofc/documentation/tree/ff3d00a3bf1bd1d07b2e9bb5fe49fd6df827a978/git-version-control/screenshots/git-repo-ssh-address.png]

	(Optional) Consider adding your SSH key to your GitHub profile so you are not prompted for credentials after every commit. To add your public SSH key to GitHub:

	Click on your user image in the top-right of the GitHub window.

	Select Settings.

	On the left, click SSH and GPG keys, then New SSH key.

	Paste your public SSH key in the box, provide a title, and save by clicking Add SSH key.

	Now, back inside Atom, open the Command Palette. On Mac, press shift+command+p. In Windows/Linux, press control+shift+p.

	Type git clone and press enter.

	Paste the SSH address in the resulting window. You may also modify the location of the local folder.

	Wait for the repository to clone.

	Now you can see the files have populated into the folder you specified. These files represent a local copy, to which you will make changes.

Git Setup

	First, use the command line to see if Git is installed. (Windows users may check their list of currently installed programs.)

git --version

	To install or update Git using your package manager:

	CentOS, RedHat:

sudo yum install git
sudo yum update git

	Debian, Ubuntu:

sudo apt-get install git
sudo apt-get update git

	MacOS, use Homebrew [https://brew.sh/]:

/usr/bin/ruby -e "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/master/install)"
brew install git
brew upgrade git

	Windows: download Git for Windows [https://gitforwindows.org/] and install it.

	Set up Git with your access credentials to GitHub with the following commands:

git config --global user.name "your_username"
git config --global user.email "your_email_address@example.com"

	You can review the information that you entered during set-up: git config --global --list

Checkout

Working from Branches

At this point, you likely either want to create a new branch and add your contributions there or checkout a different branch you or someone else has already created. Each of these option is shown next. Unless you have reason otherwise you should choose one of these, rather than attempting to work from the master branch.

Create a New Branch

	Create a Git branch by clicking on the master button on the bottom-right of the Atom window. Name the branch something descriptive.

[image: ../../_images/git-new_branch_atom.png] [https://github.com/hpc-cofc/documentation/tree/ff3d00a3bf1bd1d07b2e9bb5fe49fd6df827a978/git-version-control/screenshots/git-new_branch_atom.png]

Checkout an Existing Branch

We need the name of the remote branch we wish to work on

	The GitHub project page displays a droplist with the name of available branches.

[image: ../../_images/git-show-branches.png] [https://github.com/hpc-cofc/documentation/tree/ff3d00a3bf1bd1d07b2e9bb5fe49fd6df827a978/git-version-control/screenshots/git-show-branches.png]

	Open the Atom command palette and search for git checkout checkout (requires Git checkout plugin having been installed).

[image: misc/git-basics/../../.gitbook/assets/git-checkout-checkout-search%20%281%29.png] [https://github.com/hpc-cofc/documentation/tree/ff3d00a3bf1bd1d07b2e9bb5fe49fd6df827a978/git-version-control/screenshots/git-checkout-checkout-search.png]

You may also open the checkout dialog directly using the hotkeys ctrl+alt+shift+c (or ctrl+opt+shift+c on Mac).

	The checkout dialog is a list of branches to checkout or switch to. Using the arrow keys, highlight the custom entry and hit enter. Now type in the name of the remote branch name. You may find this in GitHub.

[image: misc/git-basics/../../.gitbook/assets/git-checkout-provide-branch%20%281%29.png] [https://github.com/hpc-cofc/documentation/tree/ff3d00a3bf1bd1d07b2e9bb5fe49fd6df827a978/git-version-control/screenshots/git-checkout-provide-branch.png]

	A notice will display if the checkout was successful. You may then switch between branches using the branch selector in the bottom-right toolbar.

[image: ../../_images/git-atom-switch-branch.png] [https://github.com/hpc-cofc/documentation/tree/ff3d00a3bf1bd1d07b2e9bb5fe49fd6df827a978/git-version-control/screenshots/git-atom-switch-branch.png]

📝 Note: If checking out a remote branch within Atom using the ‘git checkout’ plugin, ensure you read the directions carefully. Do not click on the ‘custom’ branch, use the arrow keys and press Enter, then supply the name of the remote branch you wish to checkout. Lastly, if you make a mistake while typing in the branch name, you will end up creating a new branch with the typo. Be sure to type the branch name correctly.

Command Line Branching

Rather than using the checkout dialogs in Atom, you may also list and checkout remote branches using the Git command line tools.

List remote branches:

$ git branch -r
 origin/GettingStartedWork
 origin/HEAD -> origin/master
 origin/master
 origin/wendi-5
 origin/user-contributions

Checkout a remote branch from the command line. git checkout --track origin/wendi-5 after which you may select the branch within Atom.

Edit

Once you clone a repository, it opens automatically in Atom. However, if you need to open the repository again, click on File → Add Project Folder and select your repository. Select files from the directory tree on the right of the Atom screen. Make your edits and save your changes.

GitHub GUI Editing

You do not have to use Atom for editing. You can click the edit button in GitHub, edit directly from the webpage, and preview before committing. Note that only repository owners can edit this way - otherwise, you can create a branch and edit your branch.

Add

	You can open the Git window by pressing ^+(. Here you view unstaged and staged changes.

	Unstaged means the files are not ready to be committed.

	Staged means the files are ready to be committed.

	Stage all of the files that you’d like to commit to the branch. This is accomplished by selecting the + symbol next to each file. Alternatively, on the top-right of the Git window, there is a Stage All button.

Commit

	Commit your changes either within the Git window or by entering git commit in Atom’s command palette. Enter a commit message that helps you and others understand what changes were made. Then click Commit.

Push

	Push changes to GitHub by typing git push in the command palette, or using Atom’s up/down Git arrows located on the bottom-right of the window.

📝 Note: If you get an error after typing git push that says “No upstream branch” open your terminal and navigate to the local copy of the repository. Then type git push --set-upstream origin name_of_branch. From then on you should be able to use the command palette to type git push or use the up/down arrows on the bottom-right of the window.

Merge

At this time, GitHub does not natively support submissions for merge requests via the command line.

You can create a merge request using the GitHub GUI.

	When viewing the repository on the GitHub website, click the button New pull request.

	Select the “base” branch. This will be master. Then select the “compare” branch: add-readme.

	Now click Create pull request.

Git and Atom: GitLab

GitLab

GitLab is a popular platform to share code, store software solutions, and host documentation.

Project owners control access to GitLab repositories. You may log in and create your projects and repositories, and share them with others.

[image: ../../_images/git-workflow-steps.png] [https://github.com/hpc-cofc/documentation/tree/ff3d00a3bf1bd1d07b2e9bb5fe49fd6df827a978/git-version-control/screenshots/git-workflow-steps.png]

Jump to a Section:

	Setup

	Checkout

	Edit

	Add

	Commit

	Push

	Merge

Would you prefer not to use the Atom Text Editor? We also have documentation for Git in the command line.

It is assumed that users of this guide understand basic Git/version control principles. To learn more about Git basics, visit this page.

Setup

This section covers the setup procedures for Atom and Git.

Atom Text Editor Setup

While there are many text editors to choose from, Atom is recommended due to its ability to be customized and integrated with GitLab/Git.

Install Atom: https://atom.io/

Atom has several packages which enhance the user experience and some of them you’ll need for the workflow. The packages can be installed by entering the Settings screen and choosing Install. There are thousands of packages, so try some out and have fun.

	Necessary Packages:

	git-plus (integrates Git)

	git-checkout (allows checking out remote branches within Atom)

	Optional but Recommended Packages:

	linter (aids in code validation, will also need linter package for each language)

	minimap (displays thumbnail version of document along with your location within it)

	todo-show (provides visuals for TODO and FIXME tags)

	Navigate to the GitLab repository in your web browser. For this example, we’ll use the user-documentation repository. Copy the SSH address to your machine’s clipboard.

[image: https://github.com/hpc-cofc/documentation/tree/ff3d00a3bf1bd1d07b2e9bb5fe49fd6df827a978/git-version-control/screenshots/git-repo-ssh-address.png] [https://github.com/hpc-cofc/documentation/tree/ff3d00a3bf1bd1d07b2e9bb5fe49fd6df827a978/git-version-control/screenshots/git-repo-ssh-address.png]

	(Optional) Consider adding your SSH key to your GitLab profile so you are not prompted for credentials after every commit. To add your public SSH key to GitLab:

	Click on your user image in the top-right of the GitLab window.

	Select Settings.

	On the left, click SSH keys.

	Paste your public SSH key in the box, provide a title, and save by clicking Add key.

	Now, back inside Atom, open the Command Palette. On Mac, press shift+command+p. In Windows/Linux, press control+shift+p.

	Type git clone and press enter.

	Paste the SSH address in the resulting window. You may also modify the location of the local folder.

	Wait for the repository to clone.

	Now you can see the files have populated into the folder you specified. These files represent a local copy, to which you will make changes.

Git Setup

	First, use the command line to see if Git is installed. (Windows users may check their list of currently installed programs.)

git --version

	To install or update Git using your package manager:

	CentOS, RedHat:

sudo yum install git
sudo yum update git

	Debian, Ubuntu:

sudo apt-get install git
sudo apt-get update git

	MacOS, use Homebrew [https://brew.sh/]:

/usr/bin/ruby -e "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/master/install)"
brew install git
brew upgrade git

	Windows: download Git for Windows [https://gitforwindows.org/] and install it.

	Set up Git with your access credentials to GitLab with the following commands:

git config --global user.name "your_username"
git config --global user.email "your_email_address@example.com"

	You can review the information that you entered during set-up: git config --global --list

Checkout

Working from Branches

At this point, you likely either want to create a new branch and add your contributions there or checkout a different branch you or someone else has already created. Each of these option is shown next. Unless you have reason otherwise you should choose one of these, rather than attempting to work from the master branch.

Create a New Branch

	Create a Git branch by clicking on the master button on the bottom-right of the Atom window. Name the branch something descriptive.

[image: misc/git-basics/../../.gitbook/assets/git-new_branch_atom%20%281%29.png] [https://github.com/hpc-cofc/documentation/tree/ff3d00a3bf1bd1d07b2e9bb5fe49fd6df827a978/git-version-control/screenshots/git-new_branch_atom.png]

Checkout an Existing Branch

We need the name of the remote branch we wish to work on

	The GitLab project page displays a droplist with the name of available branches.

[image: misc/git-basics/../../.gitbook/assets/git-show-branches%20%281%29.png] [https://github.com/hpc-cofc/documentation/tree/ff3d00a3bf1bd1d07b2e9bb5fe49fd6df827a978/git-version-control/screenshots/git-show-branches.png]

	Open the Atom command palette and search for git checkout checkout (requires Git checkout plugin having been installed).

[image: ../../_images/git-checkout-checkout-search.png] [https://github.com/hpc-cofc/documentation/tree/ff3d00a3bf1bd1d07b2e9bb5fe49fd6df827a978/git-version-control/screenshots/git-checkout-checkout-search.png]

You may also open the checkout dialog directly using the hotkeys ctrl+alt+shift+c (or ctrl+opt+shift+c on Mac).

	The checkout dialog is a list of branches to checkout or switch to. Using the arrow keys, highlight the custom entry and hit enter. Now type in the name of the remote branch name. You may find this in GitLab.

[image: ../../_images/git-checkout-provide-branch.png] [https://github.com/hpc-cofc/documentation/tree/ff3d00a3bf1bd1d07b2e9bb5fe49fd6df827a978/git-version-control/screenshots/git-checkout-provide-branch.png]

	A notice will display if the checkout was successful. You may then switch between branches using the branch selector in the bottom-right toolbar.

[image: misc/git-basics/../../.gitbook/assets/git-atom-switch-branch%20%281%29.png] [https://github.com/hpc-cofc/documentation/tree/ff3d00a3bf1bd1d07b2e9bb5fe49fd6df827a978/git-version-control/screenshots/git-atom-switch-branch.png]

📝 Note: If checking out a remote branch within Atom using the ‘git checkout’ plugin, ensure you read the directions carefully. Do not click on the ‘custom’ branch, use the arrow keys and press Enter, then supply the name of the remote branch you wish to checkout. Lastly, if you make a mistake while typing in the branch name, you will end up creating a new branch with the typo. Be sure to type the branch name correctly.

Command Line Branching

Rather than using the checkout dialogs in Atom, you may also list and checkout remote branches using the Git command line tools.

List remote branches:

$ git branch -r
 origin/GettingStartedWork
 origin/HEAD -> origin/master
 origin/master
 origin/wendi-5
 origin/user-contributions

Checkout a remote branch from the command line. git checkout --track origin/wendi-5 after which you may select the branch within Atom.

Edit

Once you clone a repository, it opens automatically in Atom. However, if you need to open the repository again, click on File → Add Project Folder and select your repository. Select files from the directory tree on the right of the Atom screen. Make your edits and save your changes.

GitLab GUI Editing

You do not have to use Atom for editing. You can click the edit button in GitLab, edit directly from the webpage, and preview before committing. Note that only repository owners can edit this way - otherwise, you can create a branch and edit your branch.

Add

	You can open the Git window by pressing ^+(. Here you view unstaged and staged changes.

	Unstaged means the files are not ready to be committed.

	Staged means the files are ready to be committed.

	Stage all of the files that you’d like to commit to the branch. This is accomplished by selecting the + symbol next to each file. Alternatively, on the top-right of the Git window, there is a Stage All button.

Commit

	Commit your changes either within the Git window or by entering git commit in Atom’s command palette. Enter a commit message that helps you and others understand what changes were made. Then click Commit.

Push

	Push changes to GitLab by typing git push in the command palette, or using Atom’s up/down Git arrows located on the bottom-right of the window.

📝 Note: If you get an error after typing git push that says “No upstream branch” open your terminal and navigate to the local copy of the repository. Then type git push --set-upstream origin name_of_branch. From then on you should be able to use the command palette to type git push or use the up/down arrows on the bottom-right of the window.

Merge

At this time, GitLab does not natively support submissions for merge requests via the command line.

You can create a merge request using the GitLab GUI.

	From the left menu panel in Gitlab, select Merge Request then the green New merge request button.

	Select your branch in the “Source Branch” side.

	Target branch is master.

	Click compare branches.

	On the next screen the only thing needed is:

	Assign to: < Project Owner, etc. >

	Click Submit merge request.

Hardware

SUMMARY

The cluster has 13 compute nodes including 2 GPU nodes, a login node, a high-availability storage server connected to a 512TB disk array and a fast scratch server with 40TB of storage. It’s accessible to the CofC campus via a 10Gbps ethernet link. The specs are summarized below.

	Compute nodes

	10 standard compute nodes:

	Dell PowerEdge servers

	2x 20-core 2.4GHz Intel Xeon Gold 6148 CPUs w/ 27MB L3 cache,

	192GB of DDR4 2667MHz RAM,

	480GB of local SSD storage,

	Double precision performance ~ 2.8 TFLOPs/node

	1 large memory node:

	Dell PowerEdge server

	4x 20-core 2.4GHz Intel Xeon Gold 6148 CPUs w/ 27MB L3 cache,

	1536GB of DDR4 2667MHz RAM,

	960GB of local SSD storage,

	Double precision performance ~ 5.6 TFLOPs/node

	3 GPU-containing nodes:

	Dell PowerEdge server

	2x 12-core 2.6GHz Intel Xeon Gold 6126 CPUs w/ 19MB L3 cache,

	192GB of DDR4 2667MHz RAM,

	480GB of local SSD storage,

	GPUs

	the first two have 1 NVIDIA Tesla V100 16GB GPU each

	the third has 1 NVIDIA Pascal Quadro P4000 8GB GPU

	Double precision performance

	those with 1 NVIDIA Tesla V100 16GB GPU ~ 1.8 + 7.0 = 8.8 TFLOPs/node

	those with 1 NVIDIA Pascal Quadro P4000 8GB GPU ~ 1.8 + 2.6 = 4.4 TFLOPs/node

	Login/visualization node

	1 login and visualization node:

	Dell PowerEdge server

	2x 12-core 2.6GHz Intel Xeon Gold 6126 CPUs w/ 27MB L3 cache,

	192GB of DDR4 2667MHz RAM,

	960GB of local SSD storage,

	3TB RAID5 storage

	1x NVIDIA Quadro P4000 8GB GPU

	Storage

	512TB NFS-shared, global, highly-available storage

	38TB NFS-shared, global fast scratch storage

	Interconnect [http://www.mellanox.com/page/products_dyn?product_family=192&mtag=sb7700_sb7790]

	Mellanox EDR Infiniband with 100Gb/s bandwidth

Hardware Specs

The HPC cluster is a commodity Linux cluster containing many compute, storage and networking equipment all assembled into a standard rack. Please see the table below or the rack diagram further down for the layout.

Component Specs	Component
:—	:—
1 GbE 48-port Switch (4x SPF+ 10GbE ports)	internal network
1 Mellanox 100Gbs 36-port EDR Infiniband Switch	interconnect
#8 PowerEdge R740 2x 12-core Intel Xeon-G 6128 3.4GHz CPUs, 192GB RAM, 1x480GB SAS SSDs striped + 1 NVIDIA Quadro P4000 GPU	1x p4000 gpu node
#7 PowerEdge R740 2x 12-core Intel Xeon-G 6128 3.4GHz CPUs, 192GB RAM, 1x480GB SAS SSDs striped + 1 NVIDIA Tesla V100 GPU	1x v100 gpu node
#7 PowerEdge R740 2x 12-core Intel Xeon-G 6128 3.4GHz CPUs, 192GB RAM, 1x480GB SAS SSDs striped + 1 NVIDIA Tesla V100 GPU	1x v100 gpu node
#6 PowerEdge R840 4x 20-core Intel Xeon-G 6148 2.4GHz, 1.5TB RAM, 2x480GB SATA SSD	1x large memory node
#5 2U PowerEdge R740 2x 20-core Intel Xeon-G 6148 2.4GHz, 192TB RAM, 1x480GB SATA SSD	1x gpu-capable node
#5 2U PowerEdge R740 2x 20-core Intel Xeon-G 6148 2.4GHz, 192GB RAM, 1x480GB SATA SSD	1x gpu-capable node
#4 4x PowerEdge C6420 in a 2U chassis 2x 20-core Intel Xeon-G 6148 2.4GHz, 192GB RAM, 1x480GB SSD	4x stdmem nodes
#4 4x PowerEdge C6420 in a 2U chassis 2x 20-core Intel Xeon-G 6148 2.4GHz, 192GB RAM, 1x480GB SSD	4x stdmem nodes
#3 2U NFS server with NVMe SSDs PowerEdge R740XD 2x Intel Xeon-G 6126 2.6GHz CPU, 192GB RAM, 24x 1.6TB NVMe SSDs	fast scratch storage server
#2 2U PowerEdge R740 NFS servers w/ 2x 12-core Intel Xeon Gold 6136 3.0GHz CPUs, 192GB RAM, 5x300TB 15k SAS HDDs,	NFS servers for long-term storage array
#2 2U PowerEdge R740 NFS servers w/ 2x 12-core Intel Xeon Gold 6136 CPUs, 192GB RAM, 5x300TB 15k SAS HDDs,	NFS servers for long-term storage array
#2 NSS-HA7 (Dual NFS server) 1x 5U Dell EMC PowerVault ME4084 - RBOD w/ 84x 8TB HDDs	NSS-HA7 long-term storage array
#1 PowerEdge R740 2x 12-core Intel Xeon-G 6126 2.6GHz CPU, 192GB RAM, 2x480GB SSDs mirrored, 1 NVIDIA Quadro P1000 GPU	login/viz node

Layout

[image: ../_images/rack-diagram.png]rack layout

Components

CPU

	Intel Xeon Gold Skylake 6148
:—	:—
Specs	Summary of specs [https://ark.intel.com/products/123690/Intel-Xeon-Gold-6148F-Processor-27-5M-Cache-2-40-GHz-]
Technical Overview	Technical details at Intel including comparison with previous generations [https://software.intel.com/en-us/articles/intel-xeon-processor-scalable-family-technical-overview]
Cores per socket:	20
Clock Speed	2.40 GHz base clock, 3.70 GHz Turbo Boost clock
Clock Speed Range	2.20 GHz to 3.5GHz depending on instruction set and number of active cores
Hyperthreading	Possible
Cache Hierarchy	L1 = 32 KB per core L2= 1 MB per core L3 = 27.5 MB shared per CPU
Configuration	2 CPUs per standard or GPU nodes, 4 CPUs per high memory node
Estimated Performance	1.4 TeraFLOPS per CPU (double precision)
References	1 [https://ark.intel.com/products/123690/Intel-Xeon-Gold-6148F-Processor-27-5M-Cache-2-40-GHz-] , 2 [https://software.intel.com/en-us/articles/intel-xeon-processor-scalable-family-technical-overview], 3 [https://en.wikichip.org/wiki/intel/microarchitectures/skylake], 4 [https://www.nas.nasa.gov/hecc/support/kb/skylake-processors_550.html]

GPU

	NVIDIA Tesla V100
:—	:—
Specs	Summary of Specs [https://www.nvidia.com/en-us/data-center/tesla-v100/]
Technical Overview	Technical details at NVIDIA including comparison w/ previous generations [https://github.com/hpc-cofc/documentation/tree/b8d627c8e15312d4f9047674afd89fd5590c62cc/using-the-hpc/screenshots/volta-architecture-whitepaper.pdf]
Architecture	Volta
GPU	GV100
CUDA Cores	5120
Tensor Cores	640
Boost Clock	1370MHz
Memory Clock	1.75Gbps HBM2
Memory Bus Width	4096-bit HBM2
Memory Bandwidth	900GB/sec
Memory Size	16GB
L2 Cache	6MB
Half Precision	28 TFLOPS
Single Precision	14 TFLOPS
Double Precision	7 TFLOPS
Tensor Performance	112 TFLOPS
GPU	GV100
Transistor Count	21B
TDP	250W
Form Factor	PCIe
Cooling	Passive
Manufacturing Process	TSMC 12nm FFN
Configuration	1 GPU per GPU node
Estimated Performance	7 TeraFLOPS per GPU (double precision)
References	5 [https://www.anandtech.com/show/12576/nvidia-bumps-all-tesla-v100-models-to-32gb], 6 [https://www.nvidia.com/en-us/data-center/tesla-v100/], 7 [http://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf]

Interconnect

	Mellanox EDR (100 Gbps) InfiniBand interconnect

	1:1 non-blocking

Storage

	Long-term HDD-based NFS $HOME storage - highly redundant and resilient.

	512 TB in total

	Will eventually be backed up weekly, but not yet

	Peak performance - 7 GBps / 6 GBps for sequential read/write

	Short-term NVMe SSD-based NFS $SCRATCH storage - fast storage for intermediate data during the course of a computation

	38 TB in total

	Never backed up; purged weekly or as needed

	Theoretical peak performance ~ 28 GBps / 28 GBps for sequential read/write

	Expected peak performance ~ 12 GBps / 12 GBps for sequential read/write

	Actual peak performance - 8 GBps / 5 GBps for sequential read/write

Software

OpenHPC Stack

The cluster runs OpenHPC stack [https://openhpc.community/] on top of a CentOS 7.6 operating system.

[image: ../_images/ohpc_logo.png]

The OpenHPC software stack looks like this:

[image: ../_images/openhpc-software-stack.png]See https://github.com/openhpc/ohpc/wiki/Component-List-v1.3.6 for all components

 	Category
 	Component

 	Base OS

 	CentOS 7.6 x86_64

 	Compilers

 	
 GNU8.5 (gcc, g++, gfortran),

 GNU7.3 (gcc, g++, gfortran),

 GNU5.4 (gcc, g++, gfortran),

 GNU4.8.5 (gcc, g++, gfortran),

 Intel 2019

 	MPI libraries

 	OpenMPI, MPICH, MPICH2, MVAPICH2, Intel MPI (IMPI)

 	Software provisioner

 	Lmod

 	Resource manager

 	SLURM, Munge

 	Math/Numerical Libraries

 	BLAS, LAPACK, OpenBLAS, ATLAS, MKL, Scalapack, Boost, GSL, FFTW, Hypre,
 PETSc, SuperLU, Trilinos

 	MPI libraries

 	OpenMPI, MPICH, MPICH2, MVAPICH, IMPI

 	I/O libraries

 	HDF5(pHDF), NetCDF, Adios

 	Development tools

 	Autotools (autoconf, automake, libtool), Valgrind

 	Debugging and profiling tools

 	Gprof, TAU, Likwid, Dimemas

Some of the underlying management components are:

	Available component
:—:	:—
Node provisioning	Warewulf
Resource management	SLURM
Software provisioning	Lmod modules, built using Lmod/easybuild/Spack
Cluster monitoring	Ganglia, Nagios

Application Access

A wide range of software from specific disciplines as well as general ones (Python, R, C, C++) will be pre-compiled and provisioned as modules users can load at run time. If there is a particular software users want to use, please submit a request to have them installed in a central location. Otherwise, users can install them in their own area for their personal use. If users prefer working with containers, we encourage using Singularity containers which are preferred over Docker for HPC applications.

Provisioning Software Using Modules

Our software environment uses LMod modules to set paths to executables, libraries, include files and manual pages for the installed software. The software modules available to users are organized according to the compiler and MPI library to ensure that the environment is set up properly to run the applications.

The HPC software environment uses Linux environment modules to manage versions and dependencies of software packages. When you load a module, it sets the environment variables necessary for running your program.

A list of available software modules can be viewed by typing module avail.

A list of software modules that are currently loaded can be viewed by typing module list.

By default the local repository is used as a source of software installations.

Additional information on HPC modules may be found here.

List of Applications

The list of applications available depends on the compiler and MPI libraries of choice. For the default GPU8 and OpenMPI3

GNU8 + OpenMPI3

The default software has the following applications. More applications will be added upon request.

------------------------------ /opt/ohpc/pub/moduledeps/gnu8-openmpi3 -------------------------------
 adios/1.13.1 mpiP/3.4.1 pnetcdf/1.11.0 scorep/4.1
 boost/1.69.0 mumps/5.1.2 ptscotch/6.0.6 sionlib/1.7.2
 dimemas/5.3.4 netcdf-cxx/4.3.0 py2-mpi4py/3.0.0 slepc/3.10.2
 extrae/3.5.2 netcdf-fortran/4.4.5 py2-scipy/1.2.1 superlu_dist/6.1.1
 fftw/3.3.8 netcdf/4.6.2 py3-mpi4py/3.0.0 tau/2.28
 hypre/2.15.1 opencoarrays/2.2.0 py3-scipy/1.2.1 trilinos/12.12.1
 imb/2018.1 petsc/3.10.3 scalapack/2.0.2
 mfem/3.4 phdf5/1.10.4 scalasca/2.4

----------------------------------- /opt/ohpc/pub/moduledeps/gnu8 -----------------------------------
 R/3.5.2 likwid/4.3.3 mvapich2/2.3 openmpi3/3.1.3 (L) py3-numpy/1.15.3
 hdf5/1.10.4 metis/5.1.0 ocr/1.0.1 pdtoolkit/3.25 superlu/5.2.1
 impi/2019.3.199 mpich/3.3 openblas/0.3.5 py2-numpy/1.15.3

------------------------------------- /opt/ohpc/pub/modulefiles -------------------------------------
 EasyBuild/3.7.1 cmake/3.12.2 papi/5.6.0
 autotools (L) cuda/9.2 pmix/2.1.4
 charliecloud/0.9.2 gnu7/7.3.0 prun/1.2 (L)
 chem/gamess/2018-R2 gnu8/8.3.0 (L) singularity/2.6.0
 chem/gaussian/16-B.01 hwloc/1.11.10 use.own
 chem/mopac/2016 intel/19.0.3.199 valgrind/3.13.0
 chem/orca/4.1.2 llvm5/5.0.1
 clustershell/1.8 ohpc (L)

Intel + OpenMPI3

You can switch to from the default software stack build using GNU8 to one built using Intel compilers using modules: module swap gnu8 intel

The Intel 19 and OpenMPI3 software stack currently has the following packages.

------------------------------ /opt/ohpc/pub/moduledeps/intel-openmpi3 ------------------------------
 adios/1.13.1 mfem/3.4 pnetcdf/1.11.0 sionlib/1.7.2
 boost/1.69.0 mumps/5.1.2 ptscotch/6.0.6 slepc/3.10.2
 dimemas/5.3.4 netcdf-cxx/4.3.0 py2-mpi4py/3.0.0 superlu_dist/6.1.1
 extrae/3.5.2 netcdf-fortran/4.4.5 py3-mpi4py/3.0.0 tau/2.28
 geopm/0.6.1 netcdf/4.6.2 scalapack/2.0.2 trilinos/12.12.1
 hypre/2.15.1 petsc/3.10.3 scalasca/2.4
 imb/2018.1 phdf5/1.10.4 scorep/4.1

---------------------------------- /opt/ohpc/pub/moduledeps/intel -----------------------------------
 R/3.4.2 likwid/4.3.3 ocr/1.0.1 py2-numpy/1.15.3
 gdal/2.2.3 metis/5.1.0 openmpi3/3.1.3 (L) py3-numpy/1.15.3
 hdf5/1.10.4 mpich/3.3 pdtoolkit/3.25 scotch/6.0.6
 impi/2019.3.199 mvapich2/2.3 plasma/2.8.0 superlu/5.2.1

------------------------------------- /opt/ohpc/pub/modulefiles -------------------------------------
 EasyBuild/3.7.1 chem/orca/4.1.2 hwloc/1.11.10 prun/1.2 (L)
 autotools (L) clustershell/1.8 intel/19.0.3.199 (L) singularity/2.6.0
 charliecloud/0.9.2 cmake/3.12.2 llvm5/5.0.1 use.own
 chem/gamess/2018-R2 cuda/9.2 ohpc (L) valgrind/3.13.0
 chem/gaussian/16-B.01 gnu7/7.3.0 papi/5.6.0
 chem/mopac/2016 gnu8/8.3.0 pmix/2.1.4

GNU7 + OpenMPI3

You can switch to from the default software stack build using GNU7 to one built using GNU7 using modules: module swap gnu8 gnu7

The GNU7 and OpenMPI3 software stack currently has the following packages.

----------------------------------- /opt/ohpc/pub/moduledeps/gnu7 -----------------------------------
 R/3.5.0 hdf5/1.10.2 mpich/3.2.1 mvapich2/2.2 openblas/0.2.20 openmpi3/3.1.0 (L)

------------------------------------- /opt/ohpc/pub/modulefiles -------------------------------------
 EasyBuild/3.7.1 cmake/3.12.2 papi/5.6.0
 autotools (L) cuda/9.2 pmix/2.1.4
 charliecloud/0.9.2 gnu7/7.3.0 (L) prun/1.2 (L)
 chem/gamess/2018-R2 gnu8/8.3.0 singularity/2.6.0
 chem/gaussian/16-B.01 hwloc/1.11.10 use.own
 chem/mopac/2016 intel/19.0.3.199 valgrind/3.13.0
 chem/orca/4.1.2 llvm5/5.0.1
 clustershell/1.8 ohpc (L)

GNU + OpenMPI

If you have slightly older software that requires GNU5 compilers and OpenMPI1, you can switch from the default software stack build using GNU8 to one built using GNU5 using modules: module swap gnu8 gnu

The GNU and OpenMPI software stack currently has the following packages.

--------------------------------- /opt/ohpc/pub/moduledeps/gnu-openmpi ---------------------------------
 adios/1.12.0 mumps/5.1.2 phdf5/1.10.1 scorep/3.1 trilinos/12.12.1
 boost/1.66.0 netcdf-fortran/4.4.4 scalapack/2.0.2 sionlib/1.7.1
 fftw/3.3.7 netcdf/4.5.0 scalasca/2.3.1 superlu_dist/4.2
 hypre/2.13.0 petsc/3.8.3 scipy/0.19.1 tau/2.27

------------------------------------- /opt/ohpc/pub/moduledeps/gnu -------------------------------------
 gsl/2.4 mkl/19.0.3.199 numpy/1.12.1 openmpi/1.10.7 (L)
 impi/2019.3.199 mpich/3.2.1 ocr/1.0.1 pdtoolkit/3.25
 metis/5.1.0 mvapich2/2.2 openblas/0.2.20 superlu/5.2.1

-------------------------------------- /opt/ohpc/pub/modulefiles ---------------------------------------
 EasyBuild/3.7.1 cuda/9.2 pmix/2.1.4
 autotools (L) gnu/5.4.0 (L) prun/1.2 (L)
 charliecloud/0.9.2 gnu7/7.3.0 python-intel/2.7.15
 chem/gamess/2018-R2 gnu8/8.3.0 python-intel/3.6.8 (D)
 chem/gaussian/16-B.01 hwloc/1.11.10 singularity/2.6.0
 chem/mopac/2016 intel/19.0.3.199 use.own
 chem/orca/4.1.2 llvm5/5.0.1 valgrind/3.13.0
 clustershell/1.8 ohpc (L)
 cmake/3.12.2 papi/5.6.0

All Currently Installed Applications

You can always get a list of all available modules and their description by entering module spider. You can also find this the most up-to-date tabulated Software List.

The list as of 02-03-2020 looks like

Application	Versions	Description
:—	:—	:—
EasyBuild	EasyBuild/3.7.1	Build and installation framework
R	R/3.4.2, R/3.5.0, R/3.5.2	R is a language and environment for statistical computing and graphics (S-Plus like).
adios	adios/1.12.0, adios/1.13.1	The Adaptable IO System (ADIOS)
anaconda2	anaconda2/2019.03	
anaconda3	anaconda3/2019.03, anaconda3/2019.10	
autotools	autotools	Developer utilities
bio/angsd	bio/angsd/0.931	a powerful toolset for genome arithmetic
bio/bcftools	bio/bcftools/1.9	BCFtools are meant as a faster replacement for most of the perl VCFtools commands.
bio/bedtools	bio/bedtools/2.29.0	a powerful toolset for genome arithmetic
bio/bowtie	bio/bowtie/1.2.3	an ultrafast, memory-efficient short read aligner
bio/bowtie2	bio/bowtie2/2.3.5.1	an ultrafast, memory-efficient short read aligner
bio/bwa	bio/bwa/0.7.17	a software package for mapping DNA sequences against a large reference genome
bio/hisat2	bio/hisat2/2.1.0	an ultrafast and memory-efficient tool for aligning sequencing reads to long reference sequences
bio/htslib	bio/htslib/1.9	htslib are meant as a faster replacement for most of the perl VCFtools commands.
bio/minimap2	bio/minimap2/2.12	A versatile pairwise aligner for genomic and spliced nucleotide sequences
bio/mothur	bio/mothur/1.43.0	mothur is a single piece of open-source, expandable software to fill the bioinformatics needs of the microbial ecology community
bio/ncbi-blast+	bio/ncbi-blast+/2.10.0	a powerful local alignment and search tool
bio/ngstools	bio/ngstools/2019	Programs to analyse NGS data for population genetics purposes
bio/samtools	bio/samtools/1.9	Tools (written in C using htslib) for manipulating next-generation sequencing data
bio/stacks	bio/stacks/2.41	Stacks is a software pipeline for building loci from short-read sequences, such as those generated on the Illumina platform
bio/vcftools	bio/vcftools/0.1.16	Perl and C++ tools for working with VCF files
bio/vsearch	bio/vsearch/2.14.2	A faster version of usearch for the bioinformatics needs of the microbial ecology community
boost	boost/1.66.0, boost/1.67.0, boost/1.69.0	Boost free peer-reviewed portable C++ source libraries
charliecloud	charliecloud/0.9.2	Lightweight user-defined software stacks for high-performance computing
chem/aimall	chem/aimall/19_02_13	Tools for using Bader’s Atoms-in-Molecules (AIM) tools by Todd A. Keith
chem/amber	chem/amber/18-cpu, chem/amber/18-gpu	Application for computational chemistry and biochemistry
chem/chimera	chem/chimera	Application for computational chemistry modeling and visualization
chem/gamess	chem/gamess/2018-R2	Application for computational chemistry
chem/gaussian	chem/gaussian/09-D.01, chem/gaussian/16-B.01	Application for computational chemistry
chem/jmol	chem/jmol	Application for molecular modeling
chem/mopac	chem/mopac/2016	Application for computational chemistry
chem/orca	chem/orca/4.1.2, chem/orca/4.2.0, chem/orca/4.2.1	Application for computational chemistry
chem/psi4conda	chem/psi4conda/1.3.1	Application for computational chemistry and biochemistry
chem/vmd	chem/vmd/1.9.3	Application for visualizations of molecular structures, trajectories surfaces, crystals …
chem/xtb	chem/xtb/6.2.2	Application for computational chemistry and biochemistry
clustershell	clustershell/1.8	VIM files for ClusterShell
cm1	cm1/19.8-omp	Atmospheric physics simulation package
cmake	cmake/3.12.2	CMake is an open-source, cross-platform family of tools designed to build, test and package software.
cuda	cuda/9.2, cuda/10.1	CUDA Compiler and Library
dimemas	dimemas/5.3.4	Dimemas tool
extrae	extrae/3.5.2	Extrae tool
fftw	fftw/3.3.7, fftw/3.3.8	A Fast Fourier Transform library
gdal	gdal/2.2.3	A GIS format library
geopm	geopm/0.6.1	Global Extensible Open Power Manager
geos	geos/3.7.2	GEOS (Geometry Engine - Open Source) is a C++ port of the Topology Suite (JTS)
gnu	gnu/5.4.0	GNU Compiler Family (C/C++/Fortran for x86_64)
gnu7	gnu7/7.3.0	GNU Compiler Family (C/C++/Fortran for x86_64)
gnu8	gnu8/8.3.0	GNU Compiler Family (C/C++/Fortran for x86_64)
gsl	gsl/1.15, gsl/2.4, gsl/2.5	GNU Scientific Library (GSL)
hdf5	hdf5/1.10.2, hdf5/1.10.4	A general purpose library and file format for storing scientific data
hwloc	hwloc/1.11.10	Portable Hardware Locality
hypre	hypre/2.13.0, hypre/2.14.0, hypre/2.15.1	Scalable algorithms for solving linear systems of equations
imb	imb/2018.1	Intel MPI Benchmarks (IMB)
impi	impi/2019.3.199	Intel MPI Library (C/C++/Fortran for x86_64)
intel	intel/19.0.3.199	Intel Compiler Family (C/C++/Fortran for x86_64)
likwid	likwid/4.3.3	Toolsuite of command line applications for performance oriented programmers
llvm5	llvm5/5.0.1	LLVM Compiler Infrastructure
math/mathematica	math/mathematica/12.0	Application for symbolic and numerical computation
math/matlab	math/matlab/r2017b, math/matlab/r2018a, math/matlab/r2018b, math/matlab/r2019a, math/matlab/r2019b	Application for numerical simulations
metis	metis/5.1.0	Metis development files
mfem	mfem/3.4	Lightweight, general, scalable C++ library for finite element methods
miniconda2	miniconda2/4.7.10	
miniconda3	miniconda3/4.7.10	
mkl	mkl/19.0.3.199	Intel Math Kernel Library for C/C++ and Fortran
mpiP	mpiP/3.4.1	a lightweight profiling library for MPI applications.
mpich	mpich/3.2.1, mpich/3.3	MPICH MPI implementation
mumps	mumps/5.1.2	A MUltifrontal Massively Parallel Sparse direct Solver
mvapich2	mvapich2/2.2, mvapich2/2.3	OSU MVAPICH2 MPI implementation
netcdf	netcdf/4.5.0, netcdf/4.6.1, netcdf/4.6.2	C Libraries for the Unidata network Common Data Form
netcdf-cxx	netcdf-cxx/4.3.0	C++ Libraries for the Unidata network Common Data Form
netcdf-fortran	netcdf-fortran/4.4.4, netcdf-fortran/4.4.5	Fortran Libraries for the Unidata network Common Data Form
numpy	numpy/1.12.1	NumPy array processing for numbers, strings, records and objects
ocr	ocr/1.0.1	Open Community Runtime (OCR) for shared memory
ohpc	ohpc	
openblas	openblas/0.2.20, openblas/0.3.5	An optimized BLAS library based on GotoBLAS2
opencoarrays	opencoarrays/2.2.0	ABI to leverage the parallel programming features of the Fortran 2018 DIS
openmpi	openmpi/1.10.7	A powerful implementation of MPI
openmpi3	openmpi3/3.1.0, openmpi3/3.1.3	A powerful implementation of MPI
papi	papi/5.6.0	Performance Application Programming Interface
pdtoolkit	pdtoolkit/3.25	PDT is a framework for analyzing source code
petsc	petsc/3.8.3, petsc/3.10.3	Portable Extensible Toolkit for Scientific Computation
phdf5	phdf5/1.10.1, phdf5/1.10.2, phdf5/1.10.4	A general purpose library and file format for storing scientific data
plasma	plasma/2.8.0	Parallel Linear Algebra Software for Multicore Architectures
pmix	pmix/2.1.4	
pnetcdf	pnetcdf/1.9.0, pnetcdf/1.11.0	A Parallel NetCDF library (PnetCDF)
proj	proj/5.2.0	A geospatial coordinate transformation software
prun	prun/1.2	job launch utility for multiple MPI families
ptscotch	ptscotch/6.0.6	Graph, mesh and hypergraph partitioning library using MPI
py2-mpi4py	py2-mpi4py/3.0.0	Python bindings for the Message Passing Interface (MPI) standard.
py2-numpy	py2-numpy/1.15.3	NumPy array processing for numbers, strings, records and objects
py2-scipy	py2-scipy/1.2.1	Scientific Tools for Python
py3-mpi4py	py3-mpi4py/3.0.0	Python bindings for the Message Passing Interface (MPI) standard.
py3-numpy	py3-numpy/1.15.3	NumPy array processing for numbers, strings, records and objects
py3-scipy	py3-scipy/1.2.1	Scientific Tools for Python
python-intel	python-intel/2.7.15, python-intel/3.6.8	Python is cross-platform interpreted language. This version is optimzed by Intel
rstudio	rstudio/1.2.1335, rstudio/1.2.1555	RStudio provides a GUI for running R which is a language and environment for statistical computing and graphics (S-Plus like).
scalapack	scalapack/2.0.2	A subset of LAPACK routines redesigned for heterogenous computing
scalasca	scalasca/2.3.1, scalasca/2.4	Toolset for performance analysis of large-scale parallel applications
scipy	scipy/0.19.1	Scientific Tools for Python
scorep	scorep/3.1, scorep/4.1	Scalable Performance Measurement Infrastructure for Parallel Codes
scotch	scotch/6.0.6	Graph, mesh and hypergraph partitioning library
singularity	singularity/2.6.0	Application and environment virtualization
sionlib	sionlib/1.7.1, sionlib/1.7.2	Scalable I/O Library for Parallel Access to Task-Local Files
slepc	slepc/3.10.2	A library for solving large scale sparse eigenvalue problems
spack	spack/0.12.1	Spack package management
superlu	superlu/5.2.1	A general purpose library for the direct solution of linear equations
superlu_dist	superlu_dist/4.2, superlu_dist/6.1.1	A general purpose library for the direct solution of linear equations
tau	tau/2.27, tau/2.28	Tuning and Analysis Utilities Profiling Package
trilinos	trilinos/12.12.1	A collection of libraries of numerical algorithms
use.own	use.own	
valgrind	valgrind/3.13.0	Memory debugging utilities
visit	visit/2.13.2, visit/3.0.2	VisIT is a parallel visualization suite based on VTK

Over the coming days, weeks and months, more software will be added per users request.

Other Applications and Utilities

The applications listed above are traditional HPC software that are stored in a central location that all storage and compute nodes can access. There are other system and utility applications stored locally on the login node as well as all compute and storage nodes.

How about Users’ Own Applications

You are welcome to install and run your own applications. Here are some useful tips

	It’s best to consistently stick with one compiler and MPI library if possible.

	To ease setting up the environment to run your own applications

	You can enter module load use.own to create a directory called privatemodules in your $HOME directory

	You can copy an example module file from /opt/ohpc/pub/examples/example.modulefile or /opt/ohpc/pub/examples/examplempi-dependent.modulefile and change it to match your application

Can Users Request Applications to be installed?

Absolutely. Please submit a TeamDynamix service request [https://cofc.teamdynamix.com/TDClient/Requests/ServiceDet?ID=35085] stating the application you need and any pertinent details and we will do our best to get the application available to you quickly.

Please note that some applications are trivial to install and test while others can be cumbersome. So, we can not guarantee a quick turn-around, but we will try to give you a reasonable timeline.

Storage

The storage on the HPC cluster is comes in three forms – globally accessible permanent storage (/home, $HOME), globally accessible temporary storage (/globalscratch, $GLOBALSCRATCH), and node-local temporary storage (/localscratch, $LOCALSCRATCH, $SCRATCH).

Storage Area	Path	Env variable	Purpose
:—	:—	:—	:—
User Home	/home/$USER	$HOME	Long-term data for routine access
User Global Scratch	/globalscratch/$USER	$GLOBALSCRATCH	Short-term globally accessible data for fast, batch-job access
User Local Scratch	/localscratch/$USER	$SCRATCH, $LOCALSCRATCH	Fast node-local read/write access during a batch job

USER Home

The 512TB /home partition is NFS-shared from a Dell NSS-HA storage server to the login/head node as well as all compute nodes. Permanent, long-term data should be stored here, but other data on which your computations will be done must be moved to the faster global (/globalscratch) or local (/localscratch) directories at run time. Please refrain from running calculations with large I/O footprint in this partition because they will compromise the whole cluster. The environmental variable $HOME refers to users home directories (/home/$USER). There is a disk usage quota of 100GB per faculty/staff and 10GB per students. If you need storage exceeding this quota, please request an increase by emailing hpc@cofc.edu.

USER SCRATCH

Global

The 38TB /globalscratch is a fast, temporary storage that is NFS-shared on the login/head node as well as all compute nodes. It is composed of 24 1.6TB NVMe SSD drives merged striped (RAID0) to form one big partition. Users with jobs that span multiple nodes, or intermediate data output exceeding 300GB are encouraged to use this partition for temporary storage. While there is currently no limit on how much of the storage users take up in this partition, files stored here are periodically purged to make sure there is always sufficient space for running calculations.

Node-local

The /localscratch is the local temporary space on each compute node. It is not directly accessible from other nodes. This partition is a temporary space that is strictly local to individual compute nodes. Users running calculations contained within individual nodes whose disk usage won’t exceed 300GB on most compute nodes and 600GB on the bigmem node are strongly encouraged to use this space.

Grants

Purpose

If you are submitting proposals for grant funding with a computational component that can take advantage of our HPC resources, please contact our Research and Grants Administration Office personnel [http://research.cofc.edu/administration/contact-orga-staff/index.php] and our HPC team to discuss ways in which

	you can use our HPC resources in your research

	the presence of HPC resources can strengthen your proposals

	you can request funding to add to our HPC resources

If your project is supported by grants or other funding, this information should be included on the HPC project website under the grants page. This will be used internally to provide a better idea of how CofC researchers are making use of the HPC for funded projects.

List of funded projects using CofC’s HPC

We are still compiling a list of users with funded grants. Please email hpc@cofc.edu with your grant information in the format below so that we can add it to this list.

PI NAME

| - | - |
| :— | :— |
| Primary Investigator | |
| Department | |
| Funding Agency | |
| Grant Number | |
| Start and End Dates | |
| Grant Title | |
| Link | Hopefully with an abstract and details |

Publications

Publications resulting from the use of CofC HPC resources

In your publications and presentations, please acknowledge the role that CofC’s HPC resources have played in your research and teaching. We appreciate your conscientiousness in this matter. This information helps

	communicate the role HPC plays on campus teaching and research

	encourage more faculty, students and staff to incorporate HPC into their teaching and research

	justify CofC’s investment in HPC

	ensure continued funding and support to keep HPC resources available and growing in the future

Any publications, presentations, websites, patents and other products resulting from work done on CofC HPC machines should include the following citation:

“Computation for the work described in this product was supported by the College of Charleston’s High Performance Computing (HPC) resources (https://hpc.cofc.edu).”

Copies of published papers acknowledging HPC should be submitted for inclusion on the HPC project website, under the publications page as well as the CofC Research and Grants Administration Office [http://research.cofc.edu/administration/index.php]. Be sure to include complete publication information (i.e, a URL, PDF, or PS file of the actual publication) and indicate if there are any restrictions on publication.

List of Publications

Water Triggers Hydrogen Bond Network Reshaping in the Glycoaldehyde DimerC. Perez, A. Steber, B. Temelso, Z. Kisiel, and M. SchnellAngewandte Chemie in press (2020)(doi: 10.1002/anie.201914888 [http://doi.org/10.1002/anie.201914888])

description: >-
Below are brief research being actively conducted on the HPC cluster by CofC
faculty and their students

Research Profiles

These are active projects utilizing the HPC cluster. If you would like yours to be added or changed, please email hpc@cofc.edu.

Allan Strand

(Marine Biology) http://linum.cofc.edu [http://linum.cofc.edu/]

Prof. Strand is an evolutionary biologist using advanced statistical methods to study how populations and genes change over time. The gene sequence data takes a lot of storage and analyzing the data requires a lot of processing power. Therefore, his workload is ideal for HPC clusters and he is already utilizing Open Science Grid (OSF) to run his simulations. In addition, he has an NSF grant to develop software for doing the kinds of population genetics on HPC environments.

P. Chris Fragile

(Physics and Astronomy) http://fragilep.people.cofc.edu/

Prof. Fragile is a computational astrophysicist studying the formation of black holes and how different particles flow near them. The necessary simulations are so demanding that even the world’s fastest computers can run them to fully. Prof. Fragile develops a computer code called Cosmos to make these simulations faster and more tractable. He uses local HPC resources to run test simulations and train students about software development before performing the most demanding simulations at some of the world’s most powerful HPCs at different government labs. Some of his efforts have been profiled here:https://www.tacc.utexas.edu/-/cosmos-code-helps-probe-space-oddities

Erik Sokta

(Marine Biology) - http://sotkae.people.cofc.edu

Prof. Sotka is a marine biologist studying the population genetics and conservation of marine species. Among his many projects, one is a collaboration with Prof. Allan Strand examining the genetic history of an important oyster parasite called MSX. These genetic simulations are both time and resource intensive, therefore they are perfectly suited to run on our HPC cluster.

Anthony Bishara

(Psychology) - [https://blogs.cofc.edu/bisharaa/

](https://blogs.cofc.edu/bisharaa/)Dr. Bishara uses statistical tools to assess the validity of assumptions that scientists in psychology and beyond in deriving conclusions from their data. The certainty with which he can make these assessments depends on the size of the data he can analyze. Therefore, being able to use an HPC system with large storage, memory and processing power will enable and catalyze his research. He is already using the current campus cluster to run some of his analysis code.

Kristin Krantzman

(Chemistry and Biochemistry) - [http://krantzmank.people.cofc.edu/

](http://krantzmank.people.cofc.edu/)Prof. Krantzman is a computational chemist simulating the bombardment of solid surfaces with different projectiles including the C60 buckyball, and reactions that occur at the interface between gases and solids. The molecular dynamics simulations needed to understand these collision/fragmentation phenomenon are computationally intensive and they invariably require HPC clusters to run. She uses GPU-accelerated codes to run large and long simulations that would have been unthinkable just a decade ago.

Garrett Mitchener

(Math) - [http://mitchenerg.people.cofc.edu

](http://mitchenerg.people.cofc.edu)Prof. Mitchener is an applied mathematician who develops models that are applied to linguistics and biology. He programs in Haskell and optimizes his code to run efficiently on an HPC cluster like ours.

Gabriel Williams

(Physics and Astronomy) - [http://williamsgj.people.cofc.edu

](http://williamsgj.people.cofc.edu)Prof. Williams is an atmospheric physicist studying the formation, intensification and weakening of tropical cyclones like hurricanes and typhoons. He analyzes data collected by weather aircrafts and runs fluid dynamics simulations to get a better understanding of tropical cyclones. Computational fluid dynamics (CFD) is one of the most common problems employed on HPC clusters due to its computational demands. Dr. Williams is profiled here:http://today.cofc.edu/2016/03/12/gabe-williams/

Ana Uribe

(Physics and Astronomy) -

Prof. Ana Uribe studies the evolution of planetary system by simulating how newly forming planets interact with their parent star. Her group calculates the rate of migration of a nascent planet toward its parent star and how that rate varies depending on the gas density and the nature of the surrounding material. HPC can enable and accelerate more of Prof. Uribe’s research.

Scott Harris

(Geology) - http://geology.cofc.edu/about/faculty-and-staff/harris-scott.php

Mosha Rhodes

(Biology) - http://marinebiology.cofc.edu/about-the-program/faculty-listing/rhodes-moshe-e..php

Prof. Rhodes research group uses bioinformatics software to perform microbiome analysis on raw DNA sequencing data.

Makesh Kumar

(Math) - http://kumarm.people.cofc.edu/

Xenia Mountrouidou

(Computer Science) - https://blogs.cofc.edu/mountrouidoux/

****Prof. Mountrouidou uses powerful computers to analyze the network security of IoT devices

Richard Lavrich

(Chem & Biochem) - http://chemistry.cofc.edu/about/faculty-staff-listing/lavrich-richard.php

Prof. Lavrich uses WebMO to run computational chemistry calculations supplementing his spectroscopic work.

Clyde Metz

(Chem & Biochem) http://metzc.people.cofc.edu/ [http://metzc.people.cofc.edu/Gamil]

Prof. Metz uses WebMO to run computational chemistry calculations for both his research collaborations and undergraduate computational chemistry course.

Gamil Guirgis

(Chem & Biochem) - http://chemistry.cofc.edu/about/faculty-staff-listing/guirgis-gamil.php

Prof. Guirgis uses WebMO to run computational chemistry calculations supplementing his experimental research.

Jason Overby

(Chem & Biochem) - http://overbyj.people.cofc.edu/ [http://overbyj.people.cofc.edu/Jay]

Frederick J. Heldrich

(Chem & Biochem) - http://chemistry.cofc.edu/about/faculty-staff-listing/heldrich-rick.php

| |
| :— |

Docker Containers

📝 Note: If you are looking to eventually utilize Docker containers on an High Performance Computer (HPC), you may consider using Singularity instead, as it is designed to work in HPC systems.

Background

Docker [https://www.docker.com/] is a container [https://en.wikipedia.org/wiki/Operating-system-level_virtualization] architecture and ecosystem. A linux.com article [https://www.linux.com/news/docker-shipping-container-linux-code] nicely summarizes Docker as follows:

Docker is a tool that can package an application and its dependencies in a virtual container that can run on any Linux server. This helps enable flexibility and portability on where the application can run, whether on premises, public cloud, private cloud, bare metal, etc.

Containers have somewhat similar goals to a virtual machine (vm). However, a Docker container is not a vm. You are probably aware that vm’s have some performance overhead compared to running things natively. However, it is worth noting that the applications that run inside of Docker containers actually run natively. Your Docker containers share the kernel with their host operating system. So there is no double overhead in running a container inside our vm. However, we still suffer some performance penalty by having virtualized in the first place.

Many of the applications you will be interested in deploying are already configured for very easy use with Docker. You can find public repositories of many of your favorite applications set up on Docker Hub [https://hub.docker.com/].

First Steps

This tutorial uses an Ubuntu operating system.

Install Docker

The official Docker documentation provides a lot of useful information [https://docs.docker.com/engine/installation/linux/ubuntu/#install-using-the-repository] to this end. Below we summarize only the steps outlined in that article. If you wish to understand an individual step or if something goes wrong, please refer to the article.

Otherwise, run:

sudo apt-get install \
 apt-transport-https \
 ca-certificates \
 curl \
 software-properties-common

curl -fsSL https://download.docker.com/linux/ubuntu/gpg | sudo apt-key add -

sudo apt-key fingerprint 0EBFCD88

sudo add-apt-repository \
 "deb [arch=amd64] https://download.docker.com/linux/ubuntu \
 $(lsb_release -cs) \
 stable"

sudo apt-get update
sudo apt-get install -y docker docker.io

And if all is well, you should have Docker installed on your system.

Run a Test Container

You can test that your setup is working correctly by running:

sudo docker pull hello-world
sudo docker run hello-world

If all goes well, you will have a small “hello world”-like output and return to your terminal, and should look something like this:

[image: ../_images/hw.png]

That’s it!

Singularity Containers

Written for software version 2.5.2.

Singularity is a virtualization tool that allows users to containerize workflows, applications, and environments to allow for portability, customization, and reproducibility. Additionally, Singularity is integrated with the Message Passage Interface (MPI) to be used in High Performance Computing (HPC) systems as well as Virtual Machines (VMs) which enables a seamless workflow environment. Lastly, you may also utilize Docker containers with Singularity!

Note: These instructions are adapted from the official Singularity documentation [https://www.sylabs.io/docs/].

Prerequisites

	A command line environment in Ubuntu or CentOS.

	Software dependencies (these may be numerous):

	Ubuntu

 sudo apt-get update && \
 sudo apt-get install \
 python \
 dh-autoreconf \
 build-essential \
 libarchive-dev

	CentOS

 sudo yum update && \
 sudo yum groupinstall 'Development Tools' && \
 sudo yum install \
 libarchive-devel \
 squashfs-tools

Singularity Installation

The most up-to-date version is housed in a GitHub repository. The software is installed from the source. Use Git to clone the repository and run the following commands.

git clone https://github.com/singularityware/singularity.git
cd singularity
./autogen.sh
./configure --prefix=/usr/local --sysconfdir=/etc
make
sudo make install

Building a Container using an Existing Container

The following command executes the build command, specifies the path and name of the container (lolcow.simg), and provides the location of the container on the Singularity Hub [https://www.singularity-hub.org/] (shub://GodloveD/lolcow).

singularity build lolcow.simg shub://GodloveD/lolcow

Interacting with Containers

There are three primary ways to interact with a Singularity container.

	Run: Creates an ephemeral container that runs a predefined script

singularity run lolcow.simg or ./lolcow.simg

	Shell: Supplies a command line prompt to interface with the container

singularity shell lolcow.simg

	Execute: Sends a command into the container and provides output

singularity exec lolcow.simg

Congratulations! You have successfully deployed a Singularity container!

As some next steps, navigate to the official Singularity documentation [https://www.sylabs.io/docs/] to learn more about the Singularity Hub [https://www.singularity-hub.org/], Docker Hub [https://hub.docker.com/] and building a container from scratch [https://www.sylabs.io/guides/2.5.1/user-guide/build_a_container.html].

Access your Account

On-campus Access

The CofC HPC cluster is accessible directly via SSH from the CofC campus wired and ‘eduroam’ wireless network.

Off-campus Access

Remote access [http://it.cofc.edu/network/remote] to the cluster from outside the CofC campus network requires the use of VPN much like access to other campus resources. If you are off-campus, you would need to use CofC’s VPN to access the HPC resource. If you have never used CofC’s HPC resources before, you would need to submit a VPN access request even if you have used CofC’s VPN to access other campus resources.

The process to request VPN access is:

	Go to the TeamDynamix VPN Access Request (Pulse VPN) [https://cofc.teamdynamix.com/TDClient/Requests/ServiceDet?ID=13575] page

	Click on the ‘Request VPN Access’ button on the right

	For Request Type, select new if this is your first time requesting VPN access, or add if you just need to be added to the HPC access group

	For Request and Justification, enter

	Server Name: hpc.cofc.edu (153.9.128.11)

	Justification: Description of how you intend to use the HPC cluster

Our identity management group will try to add you to the HPC access list and get you on your way quickly, but expect some delays depending on their workload.

Once You are Given Access

After your access request has been approved, your account will be created and you will be sent your access credentials and preliminary information to get you started.

	Open terminal or SSH client

	On Macs and Linux and Windows 10 - Open a terminal (Terminal, xterm, iTerm, Windows Terminal …)

	On Windows using SSH Clients - Open SSH clients such as

	MobaTerm [https://mobaxterm.mobatek.net]

	XManager [https://www.netsarang.com/en/xmanager]

	Git Bash [https://git-scm.com/download/win]

	PuTTY [http://www.chiark.greenend.org.uk/~sgtatham/putty/]

	Connect to the cluster

	On Macs and Linux and Windows 10

	Execute ssh username@hpc.cofc.edu.

	On Windows using SSH Clients - fill in the following information

	protocol - SSH

	port number - 22

	host or hostname - hpc.cofc.edu

	login or username - your HPC user name

	password - your HPC password (you can set up authentication using SSH keys later).

	Accept prompt warning if this is the first time you are connecting the HPC

	Once you have logged in to the HPC, the first thing you want to do is change your password by entering the passwd command

username@hpc[~] passwd
Changing password for user username.
Changing password for username.
(current) UNIX password:
New password:
New password:

Password successully changed.

[image: ../_images/250343.png] [https://asciinema.org/a/250343?t=4]

	By default, /home/$USER, /globalscratch/$USER and /scratch/$USER directories should be

automatically created when you log into the HPC if they aren’t created already. Also, a

slurm_examples directory provides simple examples of SLURM submission files. There will also be

other test directories from software you expressed interest in in your account request form.

You can run the following command on your terminal to see your files:

username@hpc[~] ls -lhtr /home/username
total 20K
drwxr-xr-x 2 username groupname 4 Apr 6 12:11 00_slurm-examples
-rw-r--r-- 1 username groupname 982 Apr 6 12:11 sample.slurm
-rw-r--r-- 1 username groupname 1.5K Apr 6 12:11 11_AMBER

The ls -lhtr /home/username command will show the whole list and details of the files that the username has.

Customize Environment

The Bash shell environment may be customized to suit your needs.

Initialize your environment

Our cluster utilizes Bash as the default shell and when a session started it reads commands from ~/.bashrcand ~/.bash_profile.

Environment variables are set in the file ~/.bashrc.

You can also set aliases ~/.bash_aliases

📝 Note: The files ~/.bash_profile and .bashrc are hidden. To list hidden files, type ls -a.

Know the environment variables

Here is a list of some common environment variables:

	$HOME - Path of your home directory

	$PATH - List of directories where the system checks for programs to run

	$LD_LIBRARY_PATH - List of directories where the system checks for shared libraries to load

	$HOSTNAME - The name of the host machine.

To see all your environment variables, typing env in your terminal.

$user@hpc[~]: env
PATH=
LD_LIBRARY_PATH=
MANPATH=
HOSTNAME=
TERM=xterm-256color
SHELL=/bin/bash
PWD=
HISTSIZE=
SSH_CLIENT=
CONDA_SHLVL=1
CONDA_PROMPT_MODIFIER=(base)
LMOD_PKG=/
LMOD_VERSION=
MODULEPATH=
HOME=
...

Set and modify with the environment variables

	Display the value of an environment variable using echo:

user@hpc[~]: echo $HOME
/home/$USERNAME

	Set or modify the value of environment variables with export:

user@hpc[~]: export PATH=$PATH:/home/$USER

user@hpc[~]: export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/home/$USER/custom_lib_directory

	Set or modify a value for environment variables:

user@hpc[~]: export OMP_NUM_THREADS=8

Set up custom environmental modules for your software

Modules are a utility which allow users to load and manage applications and their versions. The modules of software packages allow you to dynamically modify your user environment by using “modulefiles.” Each modulefile contains the information needed to configure the shell for an application.

You can learn more about system-wide modules at Access Software

To create module files for your own software, you can use the following steps.

How about Users’ Own Applications

You are welcome to install and run your own applications. Here are some useful tips

	It’s best to consistently stick with one compiler and MPI library if possible.

	To ease setting up the environment to run your own applications

	You can enter module load use.own to create a directory called privatemodules in your $HOME directory

	user@hpc[~]: module load use.own

user@hpc[~]: module list
Currently Loaded Modules:
 1) autotools 2) prun/1.2 3) gnu8/8.3.0 4) openmpi3/3.1.3 5) ohpc 6) use.own

user@hpc[~]: ls
privatemodules sample.slurm slurm-examples

	You can copy an example module file from /opt/ohpc/pub/examples/example.modulefile or /opt/ohpc/pub/examples/examplempi-dependent.modulefile and change it to match your application

description: A short orientation to the HPC cluster

Quickstart Guide

One of the biggest challenges for new HPC users is figuring out where to start. This page hopefully helps overcome that hurdle. If not, you can always email hpc@cofc.edu to seek help.

The HPC Cluster

The HPC cluster is a commodity Linux cluster containing many compute, storage and networking equipment all assembled into a standard rack. It is largely accessed remotely via SSH although some applications can be accessed using web interfaces and remote desktop tools.

[image: ../_images/hpc-schematic.png]A general HPC schematic.

Hardware Specs

The cluster is composed of the following main components:

	A login/visualization node/node - this is the server you connect to when you log into hpc.cofc.edu. The login node is intended for simple tasks like

	compiling and testing code,

	preparing and submitting jobs,

	checking on job status,

	doing non-intensive analysis and visualization

	transferring data to/from the cluster

	13 Compute nodes - these are the workhorses of the cluster that perform all your heavy computations. You generally submit calculations to these compute nodes using the SLURM batch scheduler, or you can do interactive computations by reserving nodes using the same SLURM scheduler. You would rarely need of the cluster. For computational work both Serial or Parallel, in Batch mode or Interactive mode, you will be using the compute nodes.

	Other components you need not worry about -

	Storage

	long-term permanent storage nodes

	short-term scratch storage nodes

	Networking

	out-of-band management switch

	high-speed InfiniBand interconnect

General Process

Running calculations on the HPC takes different forms, but here are some typical steps

	Request an account. It may take as long as 24 hours to create your accounts and run test calculations similar to what you intend to run.

	Once you have an account, log into the HPC cluster via command line SSH or remote desktop client

	Transfer data from your local computer and/or other sources to the HPC cluster

	Find software to run from the cluster itself, download from a remote source, or compile your own code

	Prepare input files

	Prepare batch submission files

	Submit your batch submission files to the queue manager to start the calculation

	Check on the calculations as they progress

	Analyze the results when they finish either on the HPC login node or copy the data to your local computer for analysis and visualization

Request an Account

	Faculty and staff can request accounts emailing hpc@cofc.edu.

	Students are eligible for accounts upon endorsement or sponsorship by their faculty/staff mentor/advisor. Their faculty/staff mentor/advisor can send an email request to hpc@cofc.edu on their behalf to initiate the account creation process.

You can read more about requesting account access.

During the account request process, you will be asked about how you intend to use the HPC so that we can make sure all the software and tools you need are available on the cluster. We also run a few tests and assist new users get started on the cluster based on the information you provide in the account request form.

Log into the HPC Cluster

Most users will access the cluster with a command line interface (CLI) using an SSH client. However, some may choose a graphical user interface (GUI) or a web interface to use the cluster.

Command line interface (CLI)

You would need an SSH client on your local computer to connect to the HPC cluster. MacOS and Linux provide SSH clients while most Windows machines require users to install external SSH clients.

In all cases, you would need to provide the following:

	hostname - hpc.cofc.edu

	user name - your user name

	your password or SSH public key location

	protocol and ports - if not populated by default, you can pick ‘SSH’ protocol running on port ‘22’

{% tabs %}
{% tab title=”Windows” %}
Windows 10 now has a Bash shell. If you are using an older version of Windows, you have the following options, among others for sure.

	Windows PowerShell [https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/powershell] - Included in windows 10; good SSH client

	MobaXterm [https://mobaxterm.mobatek.net] - free + commercial versions providing SSH, X11, VNC and FTP clients.

	XManager [https://www.netsarang.com/en/xmanager] - free + commercial versions providing SSH, X11, VNC and FTP clients.

	Git Bash [https://git-scm.com/download/win] - free and lightweight SSH client.

	PuTTY [http://www.chiark.greenend.org.uk/~sgtatham/putty/] - free SSH client and Bash environment
{% endtab %}

{% tab title=”MacOS/Linux” %}
Both Mac OS and Linux distributions include an SSH client by default. No additional software should be required to access the HPC cluster.

Mac OS users can go to Applications > Utilities > Terminal.app to open the Mac Terminal. Different Linux distributions offer terminals and feature them prominently.

To enable X11 forwarding, an XQuartz Xserver needs be running on the local Mac OS machine.
{% endtab %}
{% endtabs %}

To log into the cluster, open a terminal and enter the following command:

	ssh username@hpc.cofc.edu

If you want the ability to see graphical outputs from the cluster, give ssh a ‘-X’ or ‘-Y’ flag.

	ssh -X username@hpc.cofc.edu

You will be prompted to enter your password to log in. In the long run, you probably want to generate an SSH key that would allow you to log in without entering a password every time.

Graphical user interface (GUI)

GUIs enable users to compute on the cluster using little or no command line tools. These graphical access options come in two forms:

	Remote desktop sessions

	Web interface

Remote desktop sessions

You can learn how to access the HPC cluster using remote desktop clients here:

{% page-ref page=”access-hpc/gui-remote-desktop.md” %}

Web Interface

To make using the HPC cluster easier, some applications can be accessed using a web interface. Two such applications at the moment are WebMO and Jupyter Notebook.

	WebMO is a web interface to many computational chemistry programs. It has many powerful capabilities that give users access to computational chemistry tools without having to use a command line.

	Jupyter Notebook allows users to access and run Anaconda versions of Python 2/3, R and other applications using a web interface.

Transfer Data to the HPC Cluster

From your local computer, you can transfer your data to the cluster using scp, rsync or any command line or graphical tool

Using scp

To copy a single file

	scp ./local_file myusername@hpc.cofc.edu:/home/myusername

To copy a directory recursively

	scp -r ./local_file myusername@hpc.cofc.edu:/home/myusername

Using rsync

To copy a single file

	scp ./local_file myusername@hpc.cofc.edu:/home/myusername

To copy a directory recursively

	scp -r ./local_file myusername@hpc.cofc.edu:/home/myusername

Access Software

Our cluster uses LMod modules to provision software to users. LMod modules set paths to executables, libraries, include files and help pages for the requested software. They also load up any software the requested software depends on.

Users are welcome to install any software on their home directories and access them using custom module files or by setting up their environment in more traditional ways.

Modules

The default software stack is built using GNU8 compilers and OpenMPI3 message passing libraries. Other software that does not depend on GNU8 and OpenMPI3 libraries will also be available. As you change the compiler from GNU8, to GNU7, GNU5 or Intel2019, and the message library from OpenMPI3 to OpenMPI1, MPICH, MVAPICH or impi, the available software will vary. However, we try our best to make most software available within each stack.

Here are some helpful commands to use Lmod Modules.

	See a list of currently loaded modules

	user@hpc[~] module list

Currently Loaded Modules:
 1) autotools 2) prun/1.2 3) gnu8/8.3.0 4) openmpi3/3.1.3 5) ohpc

	See all available modules

	user@hpc[~] module avail

-- /opt/ohpc/pub/moduledeps/gnu8-openmpi3 --
 adios/1.13.1 hypre/2.15.1 netcdf-cxx/4.3.0 phdf5/1.10.4 py3-mpi4py/3.0.0 sionlib/1.7.2

-- /opt/ohpc/pub/moduledeps/gnu8 ---
 R/3.5.2 gsl/2.5 likwid/4.3.3 mvapich2/2.3 openmpi3/3.1.3 (L) py2-numpy/1.15.3

-- /opt/ohpc/pub/modulefiles ---
 EasyBuild/3.7.1 chem/gamess/2018-R2 cmake/3.12.2 math/mathematica/12.0 prun/1.2 (L)

	See a description of all available software

	user@hpc[~] module spider

--
The following is a list of the modules currently available:
--
 EasyBuild: EasyBuild/3.7.1
 Build and installation framework

 R: R/3.4.2, R/3.5.0, R/3.5.2
 R is a language and environment for statistical computing and graphics (S-Plus like).

...

	Unload a module

	user@hpc[~] module unload gnu8

Inactive Modules:
 1) openmpi3

	Swap a module with a different version

	user@hpc[~] module swap gnu8 gnu7

The following have been reloaded with a version change:
 1) openmpi3/3.1.3 => openmpi3/3.1.0

Submit a job/calculation

Our cluster uses SLURM queue manager to schedule calculations (or jobs, as they are commonly called). Generally, users log into the login node, prepare their calculations and submit them to a SLURM queue manager, which sends the calculations to run on our many compute nodes that have the necessary resources for that particular calculation.

SLURM

A SLURM batch submission file typically looks like this:

#!/bin/bash

#SBATCH -p stdmemq # Submit to 'stdmemq' Partitiion or queue
#SBATCH -J MPItest # Name the job as 'MPItest'
#SBATCH -o MPItest-%j.out # Write the standard output to file named 'jMPItest-<job_number>.out'
#SBATCH -e MPItest-%j.err # Write the standard error to file named 'jMPItest-<job_number>.err'
#SBATCH -t 0-12:00:00 # Run for a maximum time of 0 days, 12 hours, 00 mins, 00 secs
#SBATCH --nodes=1 # Request N nodes
#SBATCH --ntasks-per-node=20 # Request n cores or task per node
#SBATCH --mem-per-cpu=4GB # Request 4GB RAM per core
#SBATCH --mail-type=ALL # Send email notification at the start and end of the job
#SBATCH --mail-user=<user>@cofc.edu # Send email notification to this address (update <user>)

module list # will list modules loaded by default. In our case, it will be GNU8 compilers and OpenMPI3 MPI libraries
module swap openmpi3 mpich # swap the MPI library from the default 'openmpi3' to 'mpich'.
module list # will list modules loaded; we'll just use this to check that the modules we selected are indeed loaded
pwd # prints current working directory
date # prints the date and time

mpirun hello_world_c # run the MPI job

One can submit this SLURM batch submission file to the queue manager using the sbatch command. Here are some usage information for common SLURM commands.

	Submit a job

	user@host[~]: sbatch your_script.slurm
Submitted batch job 4359

	Get list of running jobs

	user@host[~]: squeue
 JOBID PARTITION NAME USER STATE TIME TIME_LIMI CPUS NODES NODELIST(REASON)
4340 gpuq testjob1 user1 RUNNING 2-03:06:55 4-00:00:00 2 1 gpu1
4349 stdmemq testjob2 user2 RUNNING 1:36:09 2-00:00:00 2 1 compute1
4347 bigmemq testjob3 user2 RUNNING 18:34:07 2-00:00:00 40 1 bigmem1

	Delete a job

	user@host[~]: scancel JOB_ID

	Get an overview of the cluster’s resources and queues

	user@host[~]: sinfo -o "%20P %5a %.10l %16F"
PARTITION AVAIL TIMELIMIT NODES(A/I/O/T)
stdmemq* up 2-00:00:00 10/1/0/11
stdmemq-long up 4-00:00:00 1/2/0/3
bigmemq up 2-00:00:00 1/0/0/1
gpuq up 4-00:00:00 1/1/0/2
debugq up 2:00:00 1/3/0/4
scavengeq up 1-00:00:00 2/11/0/13

Visualize Data

Remote visualization of your results during and at the end of simulations can be performed from your local computer while the data is still hosted on the HPC cluster. Please learn more about the process here:

{% page-ref page=”visualize-data.md” %}

Request an Account

SUMMARY

The account request process goes as follows

	Faculty/staff submit an account request by emailing hpc@cofc.edu or filling out a TeamDynamix Service request [https://cofc.teamdynamix.com/TDClient/Requests/ServiceDet?ID=35085] form. Students need to ask their faculty/staff advisor/mentor to submit the request on their behalf

	The requestor gets a unique link to a brief account request form online

	Once the online form is submitted, the account will be created as quickly as possible. The requestor will receive instructions on accessing the cluster.

Who can request an account?

	Faculty and staff can request accounts emailing hpc@cofc.edu.

	Students are eligible for accounts upon endorsement or sponsorship by their faculty/staff mentor/advisor. Their faculty/staff mentor/advisor can send an email request to hpc@cofc.edu on their behalf to initiate the account creation process.

What information needs to be provided?

Upon receipt of their request, faculty/staff/students will be sent a link to a brief electronic account request form seeking the following information.

	Consent to the CofC HPC’s policies

	Full name

	CofC email address

	A brief description of how they intend to use the HPC

	Any software or storage requirements

It should just take a few minutes to complete the form.

General conventions about user and group names

	User names are set to your CofC login name unless explicitly requested otherwise.

	Primary group names

	Faculty/staff - the primary group names for you and your students would be your CofC login name unless you explicitly request otherwise

	Secondary group names

	If faculty/staff need users to belong in secondary groups, say for a group of students working on the same project, they can request that a secondary group be created under a name of their choice.

What happens after you submit the form?

The account creation process is very quick, however if your work requires specific software or workflow that is not available on the HPC already, it could take longer. Nevertheless, we try our best to complete all account requests within 24 hours.

Once your account is created, you will receive an email describing how to access the cluster. We also try to run through typical software and workflow you are likely to use and share those examples. We hope that helps you get started and accelerates your use of the cluster.

You can always request a one-on-one consultation to get a detailed orientation to the HPC cluster.

Schedule Jobs using SLURM

SLURM is a powerful job scheduler that enables optimal use of an HPC cluster of any size. It takes certain information about the resource requirements of a calculations and send that calculation to run on a compute node(s) that satisfy that criteria. It also ensures that the HPC cluster is used fairly among all users.

Compute Nodes

The compute nodes have the following resources:

	S = CPU sockets

	C = Cores per CPU

	CORES = Total number of coresPU cores

NODELIST NODES PARTITION STATE CORES S:C:T MEMORY
bigmem001 1 scavengeq mixed 80 4:20:1 1536000
compute001 1 scavengeq mixed 40 2:20:1 192000
compute002 1 scavengeq mixed 40 2:20:1 192000
compute003 1 scavengeq mixed 40 2:20:1 192000
compute004 1 scavengeq mixed 40 2:20:1 192000
compute005 1 scavengeq mixed 40 2:20:1 192000
compute006 1 scavengeq mixed 40 2:20:1 192000
compute007 1 scavengeq mixed 40 2:20:1 192000
compute008 1 scavengeq mixed 40 2:20:1 192000
gpu001 1 scavengeq mixed 40 2:20:1 192000
gpu002 1 scavengeq mixed 40 2:20:1 192000
gpuv100001 1 scavengeq mixed 24 2:12:1 192000
gpuv100002 1 scavengeq mixed 24 2:12:1 192000
loginbk 1 scavengeq mixed 22 2:11:1 192000

These compute nodes belong to different queues or partitions :

PARTITION AVAIL TIMELIMIT NODES STATE NODELIST
stdmemq up 2-00:00:00 13 mix compute[001-008],gpu[001-002],loginbk,gpuv[100001-100002]
stdmemq-long up 4-00:00:00 2 mix bigmem001,gpu002
bigmemq up 2-00:00:00 1 mix bigmem001
gpuq up 4-00:00:00 2 mix gpuv[100001-100002]
debugq up 2:00:00 5 mix gpu[001-002],gpuv[100001-100002],loginbk
scavengeq up 2-00:00:00 13 mix bigmem001,compute[001-008],gpu[001-002],loginbk

Queues/Partitions

The compute nodes in the cluster are assigned to one or more queues or partitions. Users submit their jobs to one partition and the job runs on a compute node(s) that belongs in that partition. You can look at the partitions and the status of the compute resources under each using the sinfo command.

$user@host[~]: sinfo -o "%20P %5a %.10l %16F"
PARTITION AVAIL TIMELIMIT NODES(A/I/O/T)
stdmemq* up 2-00:00:00 0/10/0/10
stdmemq-long up 4-00:00:00 1/2/0/3
bigmemq up 2-00:00:00 1/0/0/1
gpuq up 4-00:00:00 1/1/0/2
debugq up 2:00:00 1/3/0/4
scavengeq up 1-00:00:00 2/11/0/13

You may submit jobs that require up to 48 hours of processing time and 8 nodes to the standard default queue. If your jobs require more computing resources than the defined Linux resource limit, please send an email to hpc@cofc.edu.

	debugq - this queue shares two compute nodes with the stdmemq queue and it is intended for testing quick jobs before submitting production runs to the stdmemq queue. Run times in this queue are limited to 2 hours and 2 nodes.

	stdmemq - this is the default queue containing 10 compute nodes with 40 cores, 192GB of RAM and 300GB SSD storage each. Run times in this queue are limited to 48 hours unless you request an extension by emailing hpc@cofc.edu.

	stdmemq-long - this queue is the same as the stdmemq , except run times in this queue are extended to a maximum of 96 hours unless you request an extension by emailing hpc@cofc.edu.

	bigmemq - this queue is intended to provide access to our large node which has 80 cores, 1.5TB of RAM and 600GB SSD. Run times in this queue are limited to 24 hours and 1 node.

	gpuq - this queue is intended to provide access to two nodes each with 1 NVIDIA Tesla V100 GPU, 24 cores, 192GB of RAM and 300GB SSD. Run times in this queue are limited to 96 hours and 1 node.

The HPC cluster is a shared computing resource. Jobs with a long wait or sleep loop jobs are not allowed on the cluster, as this wastes valuable computing time that could be used by other researchers. Any jobs with a long wait or that contain a sleep loop may be terminated without advance notice. Additionally, any processes that may create performance or load issues on the head node or interfere with other users’ jobs may be terminated. This includes compute jobs running on the compute nodes.

Batch Submission Script

A typical batch submission script file looks like this:

#!/bin/bash

#SBATCH -p stdmemq # Submit to 'stdmemq' Partitiion or queue
#SBATCH -J MPItest # Name the job as 'MPItest'
#SBATCH -o MPItest-%j.out # Write the standard output to file named 'jMPItest-<job_number>.out'
#SBATCH -e MPItest-%j.err # Write the standard error to file named 'jMPItest-<job_number>.err'
#SBATCH -t 0-12:00:00 # Run for a maximum time of 0 days, 12 hours, 00 mins, 00 secs
#SBATCH --nodes=1 # Request N nodes
#SBATCH --ntasks-per-node=20 # Request n cores or task per node
#SBATCH --mem-per-cpu=4GB # Request 4GB RAM per core
#SBATCH --mail-type=ALL # Send email notification at the start and end of the job
#SBATCH --mail-user=<user>@cofc.edu # Send email notification to this address

module list # will list modules loaded by default. In our case, it will be GNU8 compilers and OpenMPI3 MPI libraries
module swap openmpi3 mpich # swap the MPI library from the default 'openmpi3' to 'mpich'.
module list # will list modules loaded; we'll just use this to check that the modules we selected are indeed loaded
pwd # prints current working directory
date # prints the date and time

mpirun hello_world_c # run the MPI job

You can always type man sbatch to see all the SLURM batch submission options. Below is an explanation of the options used above.

-	Option	Description
:—	:—	:—
SBATCH	-p, --partition=<partition>	Submit the job to <partition> queue
SBATCH	-J, --job-name=<jobname>	Name the job as <jobname>
SBATCH	-o, --output=<filename>	Write the job’s standard output to the file name named <filename>
SBATCH	-e, --error=<filename>	Write the job’s standard error messages to the file name named <filename>
SBATCH	--mail-user=<e-mail_address>	Notify user by email when certain event types occur, as specified by the --mail-type=<type> option.
SBATCH	--mail-type=<type>	Notify user by email when certain event types occur. <type>=ALL notifies upon the start, end or failing of the job. <type>=END only notified the user at the end.
SBATCH	-N, --nodes=<n>	Request that n nodes be allocated to this job.
SBATCH	--ntasks-per-node=<ntasks>	Request that ntasks be started on each node.
SBATCH	--mem=<size[units]>	Specify the real memory required per node in the proper unit.
SBATCH	--mem-per-cpu=<size[units]>	Specify memory per core. 4GB is a reasonable number.
SBATCH	-t, --time=<time>	Maximum run time for your job in the format D-HH:MM:SS

The cluster utilizes SLURM to manage jobs that users submit to various queues on a computer system. Each queue represents a group of resources with attributes necessary for the queue’s jobs. You can see the list of queues that HPC has by typing sinfo. stdmemq is the default partition/queue.

Common Commands

The table below gives a short description of the most used SLURM commands.

Command	Description
:—	:—
squeue	reports the state of jobs (it has a variety of filtering, sorting, and formatting options), by default, reports the running jobs in priority order followed by the pending jobs in priority order
sbatch	submit a job script for later execution (the script typically contains one or more srun commands to launch parallel tasks)
scancel	cancel a pending or running job
sinfo	reports the state of partitions and nodes managed by SLURM (it has a variety of filtering, sorting, and formatting options)
sacct	report job accounting information about active or completed jobs
srun	used to submit a job for execution in real time
salloc	allocate resources for a job in real time (typically used to allocate resources and spawn a shell, in which the srun command is used to launch parallel tasks)

Note: Do not run jobs on the login nodes. All jobs launched from those nodes will be terminated without notice.

Listing jobs

To list all jobs:

$user@host[~]: squeue
 JOBID PARTITION NAME USER STATE TIME TIME_LIMI CPUS NODES NODELIST(REASON)
4340 gpuq testjob1 user1 RUNNING 2-03:06:55 4-00:00:00 2 1 gpu1
4349 stdmemq testjob2 user2 RUNNING 1:36:09 2-00:00:00 2 1 compute1
4347 bigmemq testjob3 user2 RUNNING 18:34:07 2-00:00:00 40 1 bigmem1

To list your jobs:

$user@host[~]: squeue -u $USER

To obtain the status of a job, run the following command using the job’s ID number (this is provided at time of job submission).

$user@host[~]: squeue -j JOB_ID

You can also use checkjob job_ID to show the current status of the job.

Submitting a job

To submit a job, use the sbatch command, followed by the name of your submission file. A Job ID will be provided. You may want to make note of the ID for later use.

$user@host[~]: sbatch your_script.slurm
Submitted batch job 4359

Deleting a job

Note: Be aware that deleting a job cannot be undone. Double check the job ID before deleting a job.

Users can delete their jobs by typing the following command.

$user@host[~]: scancel JOB_ID

To delete all the jobs of a user:

$user@host[~]: scancel -u $USER

Overview of resources

The sinfo command gives an overview of what resources are in each partition/queue and what their status is. It should inform your decisions on how you structure your jobs and what partition you should submit them to.

$user@host[~]: sinfo
PARTITION AVAIL TIMELIMIT NODES STATE NODELIST
stdmemq* up 2-00:00:00 1 mix bigmem1
stdmemq* up 2-00:00:00 10 mix compute[1-8],gpu[1-2]
stdmemq-long up 4-00:00:00 1 mix bigmem1
bigmemq up 2-00:00:00 1 mix bigmem1
gpuq up 4-00:00:00 1 mix gpuv1001
gpuq up 4-00:00:00 1 idle gpuv1002
debugq up 2:00:00 1 mix gpuv1001
debugq up 2:00:00 3 idle gpu[1-2],gpuv1002
scavengeq up 1-00:00:00 2 mix bigmem0,gpuv1001

You can format that output in a more concise form:

$user@host[~]: sinfo -o "%20P %5a %.10l %16F"
PARTITION AVAIL TIMELIMIT NODES(A/I/O/T)
stdmemq* up 2-00:00:00 1/10/0/11
stdmemq-long up 4-00:00:00 1/2/0/3
bigmemq up 2-00:00:00 1/0/0/1
gpuq up 4-00:00:00 1/1/0/2
debugq up 2:00:00 1/3/0/4
scavengeq up 1-00:00:00 2/11/0/13

Status of past and current jobs

The sacct command gives some accounting details on past and current jobs.

$user@host[~]: sacct
4359 jredo-0.x+ bigmemq (null) 0 COMPLETED 0:0
4360 jredo-0.x+ bigmemq (null) 0 CANCELLED 0:0
.
.
.

You can format that output in a more detailed form:

$user@host[~]: sacct --format=jobid,user,jobname,partition,end,Elapsed,State
4359 user jredo-0.x+ bigmemq 2019-08-07T15:03:15 00:00:10 COMPLETED
4360 user jredo-0.x+ bigmemq 2019-08-07T15:03:42 00:00:05 CANCELLED

SLURM environmental variables

When a SLURM job is scheduled to run, some relevant information about the job such as the names of the nodes it is running on, the number of cores, the working directory … etc … are saved as environmental variables. Users can invoke these environmental variables in their job submission scripts.

Below is a list of the most common SLURM environmental variables including with a brief description from UMD’s HPC page [https://www.glue.umd.edu/hpcc/help/slurmenv.html].

SLURM Variable Name	Description	Example values	PBS/Torque analog
:—	:—	:—	:—
$SLURM_JOB_ID	Job ID	5741192	$PBS_JOBID
$SLURM_JOB_NAME	Job Name	myjob	$PBS_JOBNAME
$SLURM_SUBMIT_DIR	Submit Directory	/home/user/testdir	$PBS_O_WORKDIR
$SLURM_JOB_NODELIST	Nodes assigned to job	compute[1-3]	cat $PBS_NODEFILE
$SLURM_SUBMIT_HOST	Host submitted from	login-hpc.cofc.edu	$PBS_O_HOST
$SLURM_JOB_NUM_NODES	Number of nodes allocated to job	2 $PBS_NUM_NODES	
$SLURM_CPUS_ON_NODE	Number of cores/node	8,3	$PBS_NUM_PPN
$SLURM_NTASKS	Total number of cores for job	11	$PBS_NP
$SLURM_NODEID	Index to node running on relative to nodes assigned to job	0	$PBS_O_NODENUM
$SLURM_LOCALID	Index to core running on within node	4	$PBS_O_VNODENUM
$SLURM_PROCID	Index to task relative to job	0	$PBS_O_TASKNUM - 1

For a more complete list of SLURM environmental variables, please check here [https://slurm.schedmd.com/sbatch.html#lbAJ].

Transfer Data

CofC’s HPC’s 10Gbps ethernet connection to the rest of the campus and outside networks allow for fast movement of large data sets into and out of the cluster. There are several transfer tool/protocol options to choose from to fit your needs.

Using the Command Line

Commandline (CLI) tools like scp, rsync and sftp are quick ways to move data around within a computer or among computers. In all the examples below, the local_host and remote_host is either the IP address or fully qualified domain name (FQDN) of the hosts. For example, if you are transferring data from your desktop to the HPC cluster, local_host would be mydesktop.cougars.int and remote_host would be hpc.cofc.edu.

scp

Secure Copy Protocol (scp) is a commandline tool that allows you to copy files between hosts securely over SSH.using Secure Copy Protocol over SSH.

In fact, TLDR [https://tldr.sh/] provides a quick summary of the ways in which you can use scp to transfer data.

	Copy a local file to a remote host:

scp path/to/local_file remote_host:path/to/remote_file

	Copy a file from a remote host to a local directory:

scp remote_host:path/to/remote_file path/to/local_directory

	Recursively copy the contents of a directory from a remote host to a local directory:

scp -r remote_host:path/to/remote_directory path/to/local_directory

	Copy a file between two remote hosts transferring through the local host:

scp -3 host1:path/to/remote_file host2:path/to/remote_directory

	Use a specific username when connecting to the remote host:

scp path/to/local_file remote_username@remote_host:path/to/remote_directory

	Use a specific ssh private key for authentication with the remote host:

scp -i ~/.ssh/private_key local_file remote_host:/path/remote_file

rsync

rsync [https://rsync.samba.org/] allows copying or syncing of data within a single host or between a local and remote host securely over SSH. It is powerful both in terms of its speed and capabilities.

TLDR [https://tldr.sh/] provides the following usage examples:

	Transfer file from local to remote host:

rsync path/to/file remote_host_name:remote_host_location

	Transfer file from remote host to local:

rsync remote_host_name:remote_file_location local_file_location

	Transfer file in archive (to preserve attributes) and compressed (zipped) mode with verbose and human-readable progress:

rsync -azvhP path/to/file remote_host_name:remote_host_location

	Transfer a directory and all its children from a remote to local:

rsync -r remote_host_name:remote_directory_location local_directory_location

	Transfer directory contents (but not the directory itself) from a remote to local:

rsync -r remote_host_name:remote_folder_location/ local_folder_location

	Transfer only updated files from remote host:

rsync -ru remote_host_name:remote_directory_location local_directory_location

	Transfer file over SSH and delete local files that do not exist on remote host:

rsync -e ssh --delete remote_host_name:remote_file local_file

	Transfer file over SSH and show global progress:

rsync -e ssh --info=progress2 remote_host_name:remote_file local_file

sftp

While scp in a non-interactive way to copy files between two computers or locations, Secure File Transfer Protocol (sftp) allows you to navigate and copy files interactively. Below are some usage examples provided by TLDR [https://tldr.sh/].

	Connect to a remote server and enter an interactive command mode:

sftp remote_user@remote_host

	Connect using an alternate port:

sftp -P remote_port remote_user@remote_host

	Transfer remote file to the local system:

get /path/remote_file

	Transfer local file to the remote system:

put /path/local_file

	Transfer remote directory to the local system recursively (works with put too):

get -R /path/remote_directory

	Get list of files on local machine:

lls

	Get list of files on remote machine:

ls

Using Graphical Interface

Depending on whether your local computer is a Windows, Mac OS or Linux machine, there are a large number of graphical file transfer clients to move data between your local computer and the HPC cluster. The main points to remember are:

	Host/hostname/server = hpc.cofc.edu

	Port = 22

	Protocol = ssh/sftp/rsync

Below is a list of the most commonly used graphical file transfer applications.

CyberDuck

Cyberduck [https://cyberduck.io/] not only allows you transfer to/from our HPC cluster, but also many cloud platforms such as Amazon S3, OpenStack Swift, Backblaze B2, Microsoft Azure & OneDrive, Google Drive and Dropbox.

	Availability - Windows and Mac OS

	Strengths -

	support for many protocols and storage services including cloud platforms

	drag-and-drop

	live editing

	file/directory syncing

	Weakness -

	No multicolumn view – can’t see local and remote host files side by side

WinSCP

WinSCP [https://winscp.net/eng/download.php]

	Availability - Windows

	Strengths -

	multicolumn views

	drag-and-drop

	Weakness -

FileZilla

Filezilla [https://filezilla-project.org]

	Availability - Windows

	Strengths -

	multicolumn views

	drag-and-drop

	Weakness -

description: >-
Remote visualization to easily monitor results and derive meaningful insights
is one of the goals of our research computing initiatives

Visualize Data

SUMMARY

The Data

Data produced from your calculations comes in many different forms such as [1] [https://www.chpc.utah.edu/presentations/images-and-pdfs/SCIVisHPC.pdf]

	Typically continuous fields –

	Scalar, vector, tensor –2D, 3D, 2.5D

	Geometry (“topology”)

	Structured (finite differences) –

	Unstructured

	Tet, hex meshes (finite elements)

	

 Access your Account

Access your Account

On-campus Access

The CofC HPC cluster is accessible directly via SSH from the CofC campus wired and ‘eduroam’ wireless network.

Off-campus Access

Remote access [http://it.cofc.edu/network/remote] to the cluster from outside the CofC campus network requires the use of VPN much like access to other campus resources. If you are off-campus, you would need to use CofC’s VPN to access the HPC resource. If you have never used CofC’s HPC resources before, you would need to submit a VPN access request even if you have used CofC’s VPN to access other campus resources.

The process to request VPN access is:

	Go to the TeamDynamix VPN Access Request (Pulse VPN) [https://cofc.teamdynamix.com/TDClient/Requests/ServiceDet?ID=13575] page

	Click on the ‘Request VPN Access’ button on the right

	For Request Type, select new if this is your first time requesting VPN access, or add if you just need to be added to the HPC access group

	For Request and Justification, enter

	Server Name: hpc.cofc.edu (153.9.128.11)

	Justification: Description of how you intend to use the HPC cluster

Our identity management group will try to add you to the HPC access list and get you on your way quickly, but expect some delays depending on their workload.

Once You are Given Access

After your access request has been approved, your account will be created and you will be sent your access credentials and preliminary information to get you started.

	Open terminal or SSH client

	On Macs and Linux and Windows 10 - Open a terminal (Terminal, xterm, iTerm, Windows Terminal …)

	On Windows using SSH Clients - Open SSH clients such as

	MobaTerm [https://mobaxterm.mobatek.net]

	XManager [https://www.netsarang.com/en/xmanager]

	Git Bash [https://git-scm.com/download/win]

	PuTTY [http://www.chiark.greenend.org.uk/~sgtatham/putty/]

	Connect to the cluster

	On Macs and Linux and Windows 10

	Execute ssh username@hpc.cofc.edu.

	On Windows using SSH Clients - fill in the following information

	protocol - SSH

	port number - 22

	host or hostname - hpc.cofc.edu

	login or username - your HPC user name

	password - your HPC password (you can set up authentication using SSH keys later).

	Accept prompt warning if this is the first time you are connecting the HPC

	Once you have logged in to the HPC, the first thing you want to do is change your password by entering the passwd command

$user@hpc[~] passwd
Changing password for user username.
Changing password for username.
(current) UNIX password:
New password:
New password:

Password successfully changed.

Please see the demo [https://asciinema.org/a/250343] below: [image: ../../_images/250343.png] [https://asciinema.org/a/250343]

	By default, /home/$USER, /globalscratch/$USER and /scratch/$USER directories should be

automatically created when you log into the HPC if they aren’t created already. Also, a

slurm_examples directory provides simple examples of SLURM submission files. There will also be

other test directories from software you expressed interest in in your account request form.

You can run the following command on your terminal to see your files:

$user@hpc[~] ls -lhtr /home/username
total 20K
drwxr-xr-x 2 username groupname 4 Apr 6 12:11 00_slurm-examples
-rw-r--r-- 1 username groupname 982 Apr 6 12:11 sample.slurm
-rw-r--r-- 1 username groupname 1.5K Apr 6 12:11 11_AMBER

The ls -lhtr /home/username command will show the whole list and details of the files that the username has.

 CLI - an SSH terminal

CLI - an SSH terminal

Most users will access the cluster with a command line interface (CLI) using an SSH client. However, some may choose a graphical user interface (GUI) or a web interface to use the cluster.

Command line interface (CLI)

You would need an SSH client on your local computer to connect to the HPC cluster. MacOS and Linux provide SSH clients while most Windows machines require users to install external SSH clients.

In all cases, you would need to provide the following:

	hostname - hpc.cofc.edu

	user name - your user name

	your password or SSH public key location

	protocol and ports - if not populated by default, you can pick ‘SSH’ protocol running on port ‘22’

{% tabs %}
{% tab title=”Windows” %}
Windows 10 now has a Bash shell. If you are using an older version of Windows, you have the following options, among others for sure.

	MobaXterm [https://mobaxterm.mobatek.net] - free + commercial versions providing SSH, X11, VNC and FTP clients.

	Windows PowerShell [https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/powershell] - Included in windows 10; good SSH client

	XManager [https://www.netsarang.com/en/xmanager] - free + commercial versions providing SSH, X11, VNC and FTP clients.

	Git Bash [https://git-scm.com/download/win] - free and lightweight SSH client.

	PuTTY [http://www.chiark.greenend.org.uk/~sgtatham/putty/] - free SSH client and Bash environment
{% endtab %}

{% tab title=”MacOS/Linux” %}
Both Mac OS and Linux distributions include an SSH client by default. No additional software should be required to access the HPC cluster.

Mac OS users can go to Applications > Utilities > Terminal.app to open the Mac Terminal. Different Linux distributions offer terminals and feature them prominently.

To enable X11 forwarding, an XQuartz Xserver needs be running on the local Mac OS machine.
{% endtab %}
{% endtabs %}

To log into the cluster, open a terminal and enter the following command:

	ssh username@hpc.cofc.edu

If you want the ability to see graphical outputs from the cluster, give ssh a ‘-X’ or ‘-Y’ flag.

	ssh -X username@hpc.cofc.edu

You will be prompted to enter your password to log in. In the long run, you probably want to generate an SSH key that would allow you to log in without entering a password every time.

 description: >- Remote desktop protocol (RDP) provides a remote fully graphical linux environment on the cluster

description: >-
Remote desktop protocol (RDP) provides a remote fully graphical linux
environment on the cluster

GUI - remote desktop

SUMMARY

Graphical user interfaces (GUIs) enable users to compute on the cluster using little or no command line tools. These graphical access options come in two forms:

	Remote desktop sessions

	FastX desktop client

	ThinLinc desktop client

	Web interface

	FastX web client

	Using web applications such as

	JupyterHub

	Jupyter Notebooks,

	WebMO and

	other web gateways

The steps below outline how users can get remote desktop access to our HPC cluster_. Please note that you would need to use a VPN to access the RDP services from off-campus networks._

RDP using StarNet FastX

A new remote desktop service (StarNet’s FastX3 [https://www.starnet.com/fastx]) is available to provide a fully graphical Linux environment on the HPC. StarNet’s FastX3 [https://www.starnet.com/fastx] is a tool for remote desktop access to Linux systems. We have a FastX server running on the cluster and users can connect to the cluster using a

	FastX desktop client or

	Web client

A FastX3 interactive session can be disconnected from without closing the session, allowing users to leave applications running and resume their sessions from other locations. More information on this utility can be found on the StarNet website: https://www.starnet.com/fastx

Desktop Client

Here are steps [https://www.chpc.utah.edu/documentation/software/fastx2.php#utdc] as adapted from University of Utah’s HPC center

	Download the latest FastX client for your OS. [https://www.starnet.com/download/fastx-client]

	Start the FastX client on your desktop (Note: If you are connecting using a VPN, be sure to start the VPN prior to opening the FastX client.)

	Use the “+” found in the upper right corner to define a server.

[image: ../../_images/fastx-1.png]

	You need to provide a name, the host and a user (your HPC user name) data. ****

	Servers can be edited (clicking on the right “pencil”) or deleted by clicking on the X-icon on the right edge.

	You can create several entries (i.e. different hosts & user names)

[image: ../../_images/fastx-2.png]

	Once you have servers defined you can select one of them and login by clicking on them.

[image: using-the-hpc/access-hpc/../../.gitbook/assets/fastx-3%20%281%29.png]

	When you do so, two windows will open. In the top window, you will be asked to enter your password. As soon as you are logged, the password window will disappear and the main window will appear. To open a new session on this server, click on the “+” symbol in the top window.

[image: ../../_images/fastx-4.png]

	A new window will pop up. You need to either take one of the options given in the window or add a command. When you do this the session becomes defined in this window, along with the start and last connect time, and a new window opens for your session. Your choice depends on your needs. There are both full desktop (XFCE desktops) and different xterm/terminal options**.**

[image: ../../_images/fastx-5.png]

	You can open a terminal or run any graphical applications from the graphical desktop session.

[image: ../../_images/fastx-6.png]

	If you want to finish the session, you can close this window. Please do this for any session that you are done with to ensure there are sufficient resources available to meet the active user needs. If you want to keep the session in order to return to it, right click on the session name in the list and select the pause (“||” button) You can close the FastX window listing the sessions at this point, and this closes your connection on the server. To reconnect, either from the same desktop or another, start FastX, select and login to the same server, and you should see your saved session. Right click on the session, and select the “play” button. All windows you had open when you disconnected will appear.

[image: ../../_images/fastx-7.png]

	Please be sure to close any sessions you no longer need to keep the number of sessions at a minimum.

Web Client

The steps to access the cluster using a web client are the same as those outlined for the desktop client

	Open a web browser on your local computer and point it to hpc.cofc.edu:3300 or https://hpc.cofc.edu/rdp

	Fill out the proceeding pages with your user name, server name and login credentials

While the FastX web client is very convenient, it does pose security concerns. To prevent these security issues from being exploited, users should make sure

	they are using it on a secure personal that only they have access to. Please DO NOT use the client on a public or shared computer.

	do not save any login credentials after they are done with a session.

Much like other services, you would need to connected to the CofC VPN before accessing these remote desktop services.

RDP using Cendio ThinLinc

We have Cendio Thinlinc [https://www.cendio.com/thinlinc/download] remote desktop services running on the cluster to provide users access to a graphical Linux environment. We only have 25 concurrent licenses FastX and 5 concurrent Thinlinc licenses, so please close the remote desktop session and exit as soon as you are finished. Users would need to download and install a Thinlinc Client from the Cendio [https://www.cendio.com/thinlinc/download] site. There are Thinlinc Clients for Windows, MacOS and Linux.

We only have 5 concurrent licenses of Cendio Thinlinc, so please close the remote desktop session and exit as soon as you are finished.

Desktop Client

We have a Cendio Thinlinc [https://www.cendio.com/]remote desktop server running on the cluster to provide users access to a graphical Linux environment.

	Download and install a Thinlinc Client. There are Thinlinc Clients for Windows, MacOS and Linux. https://www.cendio.com/thinlinc/download

	After installing the Thinlinc Client, you can start the application and provide the necessary information to start the remote desktop session.

[image: using-the-hpc/access-hpc/../../.gitbook/assets/thinlinc-client-login%20%281%29.png]ThinLinc Client login window

	To ensure optimal usage without consuming a lot of resources on the client as well as server side, we recommend that you make the following changes to the under ‘Options’.

[image: ../../_images/thinlinc-client-disable-audio.png]Disable exporting all local resources

[image: using-the-hpc/access-hpc/../../.gitbook/assets/thinlinc-client-security-usesshkeys%20%281%29.png]If you have set up SSH keys, please choose 'public key' authentication

[image: using-the-hpc/access-hpc/../../.gitbook/assets/thinlinc-client-disable-fullscreen%20%281%29.png]Disable 'Full screen mode'

	After you provide all the necessary information to log in, you will be asked to pick a ‘Profile’ or desktop manager. To prevent these remote desktop from taking too many resources in the login node, we suggest that you use a clean and lightweight desktop like XFCE.

[image: ../../_images/thinlinc-client-pick-dm.png]Pick the XFCE desktop manger

	Once you have picked a ‘profile’ or desktop manager, you should see a Linux remote desktop environment.

[image: ../../_images/thinlinc-client-rdsession.png]XFCE remote desktop environment

Note: Because we only have 5 concurrent licenses, please close the remote desktop session and exit as soon as you are finished.

Web Interfaces

Some web interfaces enable setting up, running and analyzing HPC from a web browser. Two of those approaches will be discussed below.

JupyterHub

JupyterHub+JupyterLab provide a complete multi-user web interface to the HPC for interactive computing

Please see the page below.

{% page-ref page=”../scheduling-jobs/jupyterhub.md” %}

Jupyter Notebooks

While you are encouraged to use JupyterHub for interactive computing because of its convenience, you are welcome to run Jupyter Notebooks as prescribed in the page below

{% page-ref page=”../scheduling-jobs/jupyter-notebooks.md” %}

WebMO

Please see the page below

{% page-ref page=”../scheduling-jobs/webmo.md” %}

 How to Use

How to Use

This section will walk you through the primary steps that are required to get you started using the HPC resources. If, at any time, you have trouble, do not hesitate to contact us.

	Prerequisites

	Request Credentials for an Allocation

	Access to your Allocation

	Execute a Job on an Allocation

 Compilers

Compilers

HPC supports four programming environment (PE) modules to easily switch between compilers. Each programming environment contains the full set of compatible compilers and libraries.These compilers are: GNU Collection Compiler (GCC) [https://gcc.gnu.org], the Intel compiler [https://software.intel.com/en-us/intel-compilers], The Portland Group (PGI) [https://www.pgroup.com], and the Numerical Algorithms Group (NAG) [https://www.nag.com/nag-compiler].

📝 Note: You cannot use more than one PE-module at the same time. For example, if you are working with GNU and then you decide to work with the Intel compiler, first unload the PE-gnu module and then load PE-intel.

The GNU Compiler Suite

To load the GNU module:

module load PE-gnu

You can check which modules are loaded in your system by typing:

$ module list
Currently Loaded Modulefiles:
 1) gcc/5.3.0 2) openmpi/1.10.3 3) xalt/0.7.5 4) PE-gnu/1.0

To display information about the module, such as the size, the compiler, or the source from which the module was created, etc., use the following command:

$ module display PE-gnu

/software/dev_tools/swtree/cs400/modulefiles/PE-gnu/1.0:

module-whatis PE-gnu defines the environment needed to build

 applications using GNU compiler suites on this system.
conflict PE-gnu PE-intel PE-pgi
setenv PE_NAME GNU
setenv PE_CC mpicc
setenv PE_CXX mpic++
setenv PE_FORTRAN mpif90
prepend-path PATH /software/dev_tools/swtree/cs400_centos7.2_pe2016-08/PE/1.0/noarch/bin
module load xalt

You can switch between the two versions of PE-gnu v1.0 and PE-gnu v2.0:

$ module switch PE-gnu/1.0 PE-gnu/2.0
$ module list
Currently Loaded Modulefiles:
 1) gcc/5.3.0 2) openmpi/2.1.1 3) PE-gnu/2.0 4) xalt/0.7.5

The Intel Compiler Suite

📝 If you are working with another module, first you need to unload it.

module load PE-intel

You can see what the module provides with the commands module list and module display.

$ module list
Currently Loaded Modulefiles:
 1) intel/16.0.1 2) openmpi/1.10.3 3) xalt/0.7.5 4) PE-intel/1.0

module display PE-intel

/software/dev_tools/swtree/cs400/modulefiles/PE-intel/1.0:

module-whatis PE-intel defines the environment needed to build

 applications using Intel compiler suites on this system.
conflict PE-gnu PE-intel PE-pgi
setenv PE_NAME INTEL
setenv PE_CC mpicc
setenv PE_CXX mpic++
setenv PE_FORTRAN mpif90
prepend-path PATH /software/dev_tools/swtree/cs400_centos7.2_pe2016-08/PE/1.0/noarch/bin
module load xalt

The Portland Group Compiler Suite

📝 If you are working with another module, first you need to unload it.

module load PE-pgi

You can see what does the module provides with the commands module list and module display.

$ module list
Currently Loaded Modulefiles:
 1) pgi/15.7.0 2) openmpi/1.10.3 3) xalt/0.7.5 4) PE-pgi/1.0

$ module display PE-pgi

/software/dev_tools/swtree/cs400/modulefiles/PE-pgi/1.0:

module-whatis PE-pgi defines the environment needed to build

 applications using PGI compiler suites on this system.
conflict PE-gnu PE-intel PE-pgi
setenv PE_NAME PGI
setenv PE_CC mpicc
setenv PE_CXX mpic++
setenv PE_FORTRAN mpif90
prepend-path PATH /software/dev_tools/swtree/cs400_centos7.2_pe2016-08/PE/1.0/noarch/bin
module load xalt

The Numerical Algorithm Group Compiler Suite

📝 If you are working with another module, first you need to unload it.

module load PE-nag

You can see what the module provides with the commands module list and module display.

$ module list
Currently Loaded Modulefiles:
 1) nag/6.0 2) mpich/3.2 3) xalt/0.7.5 4) PE-nag/1.0

$ module display PE-nag

/software/dev_tools/swtree/cs400/modulefiles/PE-nag/1.0:

module-whatis PE-nag defines the environment needed to build

 applications using NAG Fortran compiler on this system.
conflict PE-gnu PE-intel PE-pgi
setenv PE_NAME NAG
setenv PE_CC mpicc
setenv PE_CXX mpic++
setenv PE_FORTRAN mpif90
prepend-path PATH /software/dev_tools/swtree/cs400_centos7.2_pe2016-08/PE/1.0/noarch/bin
module load xalt

 Managing Jobs

Managing Jobs

HPC utilizes SLURM to manage jobs that users submit to various queues on a computer system. Each queue represents a group of resources with attributes necessary for the queue’s jobs. You can see the list of queues that HPC has by typing squeue. stdmemq is the default partition/queue.

📝 Note: Do not run jobs on the login nodes. All jobs launched from those nodes will be terminated without notice.

Listing jobs

To list all jobs:

squeue

To list your jobs:

squeue -u $USER

To obtain the status of a job, run the following command using the job’s ID number (this is provided at time of job submission).

squeue -j JOB_ID

You can also use checkjob job_ID to show the current status of the job.

Submitting a job

To submit a job, use the sbatch command, followed by the name of your submission file. A Job ID will be provided. You may want to make note of the ID for later use.

sbatch your_script

Deleting a job

📝 Note: Be aware that deleting a job cannot be undone. Double check the job ID before deleting a job.

Users can delete their jobs by typing the following command.

scancel JOB_ID

To delete all the jobs of a user:

scancel -u $USER

Overview of resources

The sinfo command gives an overview of what resources are in each partition/queue and what their status is. It should inform your decisions on how you structure your jobs and what partition you should submit them to.

sinfo

You can format that output in a more concise form:

sinfo -o "%20P %5a %.10l %16F"

Status of past and current jobs

The sacct command gives some accounting details on past and current jobs.

sacct

You can format that output in a more detailed form:

sacct --format=jobid,user,jobname,partition,end,Elapsed,State

Related Information

	Execute a Job

 More Job Details

More Job Details

AVAILABLE QUEUES:

user@host[~/] sinfo
PARTITION AVAIL TIMELIMIT NODES STATE NODELIST
stdmemq up 2-00:00:00 8 idle compute[001-008]
bigmemq up 2-00:00:00 1 idle bigmem001
debugq up 2:00:00 2 idle gpu[001-002]
gpuq up 2-00:00:00 2 idle gpuv100[001-002]

Description:

Queue | QOS | Max Walltime | Priority | Description
——– | —– | ———— | ——– | —————————————————————–
stdmemq | std | 48 hours | avg | the 8 nodes in this queue are the best choice for most jobs
bigmemq | std | 4 hours | avg | this node with 80 cores and 1.5TB of memory is ideal for large SMP jobs with large memory demands
gpuq | std | 48 hours | avg | this partition is exclusively for jobs utilizing our NVIDIA Tesla V100 GPUs
debugq | devel | 2 weeks | high | the 2 nodes in this partition are for short jobs (< 2 hr) and quick development tests

Example Submission Scripts:

STDMEMQ:

#PBS -N jobname
#PBS -A group
#PBS -q batch
#PBS -W group_list=group_name
#PBS -l qos=burst
#PBS -l nodes=16:ppn=16
#PBS -l walltime=1:00:00

STANDARD CPU QUEUE:

#PBS -N jobname
#PBS -A group
#PBS -q high_mem
#PBS -W group_list=group_name
#PBS -l qos=std
#PBS -l nodes=16:ppn=16
#PBS -l walltime=1:00:00

GPU QUEUE:

#PBS -N jobname
#PBS -A group
#PBS -q gpu_ssd
#PBS -W group_list=group_name
#PBS -l qos=std
#PBS -l nodes=2:ppn=16
#PBS -l walltime=1:00:00

Scheduling Batch Jobs

Batch scripts, or job submission scripts, are the mechanism by which a user submits and configures a job for execution. A batch script is simply a shell script which contains:

	Commands that can be interpreted by batch scheduling software (e.g. PBS)

	Commands that can be interpreted by a shell

The batch script is submitted to the batch scheduler where it is parsed. Based on the parsed data, the batch scheduler places the script in the scheduler queue as a batch job. Once the batch job makes its way through the queue, the script will be executed on a service node within the set of allocated computational resources.

Sections of a Batch Script - Batch scripts are parsed into the following three sections:

	The Interpreter Line: The first line of a script can be used to specify the script’s interpreter. This line is optional. If not used, the submitter’s default shell will be used. The line uses the “hash-bang-shell” syntax: #!/path/to/shell

	The Scheduler Options Section: The batch scheduler options are preceded by #PBS, making them appear as comments to a shell. PBS will look for #PBS options in a batch script from the script’s first line through the first non-comment line. A comment line begins with #. #PBS options entered after the first non-comment line will not be read by PBS.

	The Executable Commands Section: The shell commands follow the last #PBS option and represent the main content of the batch job. If any #PBS lines follow executable statements, they will be ignored as comments.

The execution section of a script will be interpreted by a shell and can contain multiple lines of executable invocations, shell commands, and comments. When the job’s queue wait time is finished, commands within this section will be executed on a service node (sometimes called a “head node”) from the set of the job’s allocated resources. Under normal circumstances, the batch job will exit the queue after the last line of the script is executed.

An Example Batch Script:

#!/bin/bash
#PBS -A group
#PBS -N username
#PBS -l nodes=16:ppn=8
#PBS -l walltime=4:00:00
#PBS -W group_list=group_name
#PBS -q high_mem
#PBS -j oe
#PBS -m abe
#PBS -M your_email@example.com
#PBS -V
#PBS -o o.log
#PBS -e e.log
#PBS -S /bin/bash

The following table summarizes frequently-used options to PBS:

Option | Use | Description
—— | —————— | ——————————————————————————
-A | #PBS -A | Causes the job time to be charged to ???. The account string is typically composed of the three letters followed by three digits and optionally followed by a subproject identifier. The utility showproj can be used to list your valid assigned project ID(s). This option is required by all jobs.
-l | #PBS -l nodes= | Maximum number of compute nodes. Jobs cannot request partial nodes.
| #PBS -l ppn= | Processors per nodes.
| #PBS -l walltime= | maximum wall-clock time, is in the format HH:MM:SS.
| #PBS -l partition= | Allocates resources on specified partition.
-o | #PBS -o | Writes standard output to ??? instead of .o$PBS_JOBID, $PBS_JOBID is an environment variable created by PBS that contains the PBS job identifier.
-e | #PBS -e | Writes standard error to ??? instead .e$PBS_JOBID
-j | #PBS -j {oe, eo} | Combines standard output and standard error into the standard error file (eo) or the standard out file (oe).
-m | #PBS -m a | Sends email to the submitter when the job aborts.
| #PBS -m b | Sends email to the submitter when the job begins.
| #PBS -m e | Sends email to the submitter when the job ends.
-M | #PBS -M | Specifies email address to use for -m options.
-N | #PBS -N | Sets the job name to ??? instead of the name of the job script.
-S | #PBS -S | Sets the shell to interpret the job script.
-q | #PBS -q | Directs the job to the specified queue. This option is not required to run in the default queue on any given system.
-V | #PBS -V | Exports all environment variables from the submitting shell into the batch job shell. Not recommended because the login nodes differ from the service nodes, using the -V option is not recommended. Users should create the needed environment within the batch job.
-X | #PBS -X | Enables X11 forwarding. The -X PBS option should be used to tunnel a GUI from an interactive batch job.

To submit job to the queue:

qsub job_submission_script

To check status of the jobs in the queue:

qstat -u username

PBS sets multiple environment variables at submission time. The following PBS variables are useful within batch scripts:

Variable | Description
————– | ———————————————————————————————————————–
$PBS_O_WORKDIR | The directory from which the batch job was submitted. By default, a new job starts in your home directory.
$PBS_JOBID | The job’s full identifier. A common use for PBS_JOBID is to append the job’s ID to the standard output and error files.
$PBS_NUM_NODES | The number of nodes requested.
$PBS_JOBNAME | The job name supplied by the user.
$PBS_NODEFILE | The name of the file containing the list of nodes assigned to the job. Used sometimes on non-Cray clusters.

 Prerequisites

Prerequisites

To properly utilize the HPC cluster, you will need a couple of utilities loaded on your local machine. These utilities are free and widely used for this type of application.

	Required: SSH client

	Recommended: Bash terminal

MacOS and Linux

Both macOS and Linux distributions include a Bash terminal and an SSH client by default. No additional software should be required to access HPC Condos.

Windows Users

Windows 10 now has a Bash shell. If you are using an older version of Windows, you have the following options, among others for sure.

	MobaTerm [https://mobaxterm.mobatek.net] - It provides SSH, X11, VNC and FTP clients .

	PuTTY [http://www.chiark.greenend.org.uk/~sgtatham/putty/] - SSH client and Bash environment for Windows.

	Git Bash [https://git-scm.com/download/win] – Part of the Git for Windows environment includes Git Bash, which provides a light weight ssh client.

 CVMFS Modules

CVMFS Modules

Intro to CVMFS

Full documentation for the CernVM-File System (CVMFS) is available here [https://cvmfs.readthedocs.io/en/stable/] which provides an introduction:

“The CernVM-File System (CernVM-FS) provides a scalable, reliable and low-maintenance software distribution service. It was developed to assist High Energy Physics (HEP) collaborations to deploy software on the worldwide- distributed computing infrastructure used to run data processing applications. CernVM-FS is implemented as a POSIX read-only file system in user space (a FUSE module). Files and directories are hosted on standard web servers and mounted in the universal namespace /cvmfs. Internally, CernVM-FS uses content-addressable storage and Merkle trees in order to maintain file data and meta-data. CernVM-FS uses outgoing HTTP connections only, thereby it avoids most of the firewall issues of other network file systems. It transfers data and meta-data on demand and verifies data integrity by cryptographic hashes.

By means of aggressive caching and reduction of latency, CernVM-FS focuses specifically on the software use case. Software usually comprises many small files that are frequently opened and read as a whole. Furthermore, the software use case includes frequent look-ups for files in multiple directories when search paths are examined.

CernVM-FS is actively used by small and large HEP collaborations. In many cases, it replaces package managers and shared software areas on cluster file systems as means to distribute the software used to process experiment data.”

CVMFS might be thought of as a content distribution network for software which makes centrally managed and updated software repositories available across resources. This allows using the same software packages, toolchains, libraries and tools, across HPC institutes, private or public cloud environments and even desktop systems.

CVMFS integrates very will with container management systems, allowing the same software tree to be presented within containers or VMs without having to install (and maintain) the same packages into each, which may vary in versions or compilation options as well as creating container size bloat.

Software accessed via CVMFS is cached locally, thus providing runtime performance comparable to locally installed versions.

CVMFS within HPC

CCLA is providing initial access to cvmfs software repositories for evaluation in our HPC environments.

Repositories for the Open Science Grid, and a (currently empty) internal CCLA repo are available on SPHC nodes.

CVMFS software repos may also be accessed by VMs running in CCLA OpenStack and Univ desktop Linux systems. Instructions will be provided for these use cases, though CCLA support efforts will be focused on CVMFS within the HPC environment.

CVMS on HPC Condos

The HPC cluster login and compute nodes have cvmfs configured for the Open Science Grid repo and a new (as yet empty) cad.univ.edu repo.

Other software repos (CERN, SLAC, FNAL, etc.) may be officially added in the future.

CVMFS Repos Available

The cad repos is hosted by Univ which over time will be populated with the CCLA software tree.

The OSG repo contains software distributed and maintained by the Open Science Grid.

Directories under /cvmfs are automounted upon access. The cvmfs_config probe command will also cause them to be presented as well as verify availability:

On or-condo-login01:

-bash-4.2$ cvmfs_config probe
Probing /cvmfs/oasis.opensciencegrid.org... OK
Probing /cvmfs/rdlinux.univ.edu... OK
Probing /cvmfs/cad.univ.edu... OK

-bash-4.2$ ls /cvmfs/oasis.opensciencegrid.org/osg/
bin modules modules2 palms projects README.txt sw test_spack update.details

-bash-4.2$ ls /cvmfs/cad.univ.edu/
cad-ops pgi

OSG CVMFS Provided Modules and Tutorials

The Open Science Grid repo provides a nice software catalog and module wrapper to allow easily switching to their software tree.

This software repository is built and maintained by the OSG, and not CCLA. It is made available to users, though the software itself is not supported by CCLA.

Additional info: https://support.opensciencegrid.org/support/solutions/articles/12000006683-switching-between-oasis-and-local-modules

On hpc-login01

-bash-4.2$ source /cvmfs/oasis.opensciencegrid.org/osg/modules/lmod/current/init/bash

-bash-4.2$ module avail
----------------------- /cvmfs/oasis.opensciencegrid.org/osg/modules/modulefiles/Core -----------------------
 ANTS/1.9.4 freetype/2.5.5 opencv/2.4.10
 ANTS/2.1.0 (D) fsl/5.0.8 opensees/6482
 Julia/0.6.0 gamess/2013 opensim/3.3
 MUMmer/3.23 gate/7.2 orca/3.0.3
 OpenBUGS/3.2.3 gcc/4.6.2 orca/4.0.0 (D)
 OpenBUGS-3.2.3/3.2.3 gcc/4.6.4 papi/5.3.2
 R/3.1.1 (D) gcc/4.8.1 pari/2.7.5
 R/3.2.0 gcc/4.9.2 (D) pax/evan-testing
 R/3.2.1 gcc/4.9.3 pax/4.5.0
 R/3.2.2 gcc/6.2.0 pax/4.6.1
 R/3.3.1 gd/2.1.1 pax/4.9.1
 R/3.3.2 gdal/2.0.0 pax/4.11.0 (D)
 RAxML/8.2.9 geant4/9.4p02 pbsuite/14.9.9
 RAxML-NG/0.5.0beta geant4/10.02 pcre/8.35
 SeqGen/1.3.3 geant4/10.3p01 (D) pegasus/4.4.2-image_tools
 Shelx/2015 geos/3.4.2 pegasus/4.5.3
 SitePackage gfal/7.20 pegasus/4.6.0dev
 SparseSuite/4.2.1 git/1.9.0 pegasus/4.6.0cvs
 ViennaRNA/2.2 glpk/4.54 pegasus/4.6.0
 abyss/2.0.2 gmp/6.0.0 pegasus/4.6.1dev
 ant/1.9.4 gnome_libs/1.0 pegasus/4.6.1
 apr/1.5.1 gnuplot/4.6.5 pegasus/4.7.0
 aprutil/1.5.3 graphviz/2.38.0 pegasus/4.7.1
 arc-lite/2015 grass/6.4.4 pegasus/4.7.3
 atlas/3.10.1 gromacs/4.6.5 pegasus/4.7.4
 atlas/3.10.2 (D) gromacs/5.0.0 (D) pegasus/4.8.0 (D)
 autodock/4.2.6 gromacs/5.0.5.cuda phenix/1.10
 bedtools/2.21 gromacs/5.0.5 poppler/0.24.1 (D)
 binutils/2.26 gromacs/5.1.2-cuda poppler/0.32
 blasr/1.3.1 gsl/1.16 povray/3.7
 blast gsl/2.3 (D) proj/4.9.1
 blender hdf5/1.8.9 proot/2014
 boost/1.50.0 hdf5/1.8.12-cxx11 protobuf/2.5
 boost/1.56 hdf5/1.8.12 psi4/0.3.74
 boost/1.57.0 hdf5/1.8.13-cxx11 psi4/1.1 (D)
 boost/1.62.0-cxx11 hdf5/1.8.13 (D) python/2.7 (D)
 boost/1.62.0 (D) healpix/3.30 python/3.4
 bowtie/2.2.3 hisat2/2.0.3-beta python/3.5.2
 bowtie/2.2.9 (D) hmmer/3.1 qhull/2012.1
 bwa/0.7.12 igraph/0.7.1 root/5.34-32-py34
 bwa/2014 (D) imagemagick/7.0.2 root/5.34-32
 bzip2/1.0.6 intelMKL/11.3.0.109 root/6.06-02-py34 (D)
 canopy/1.4.1 ipopt/3.12.6 rosetta/2015
 casino/2.13.211 jasper/1.900.1 rosetta/2016-02
 cblosc/1.7.1 java/7u71 rosetta/2016-32 (D)
 ccp4/2015 java/8u25 ruby/2.1
 cctools/4.4.2 java/8u131 (D) rucio/1.6.6
 cctools/5.2.3 jpeg/6b saga/2.2.0
 cctools/5.4.7 jpeg/9a (D) samtools/0.1.17
 cctools/6.0.7 (D) julia/0.6.0 samtools/1.3.1 (D)
 cdo/1.6.4 lammps/2.0 sca/10.1.6a
 cfitsio/3.37 lammps/15May15 (D) scons/2.3.4
 circos/0.68 lapack/3.5.0 sdpa/7.3.8
 clhep/2.1.0.1 lapack/3.6.1 (D) serf/1.37
 clhep/2.2.0.8 libXpm/3.5.10 settarg/5.6.2
 clhep/2.3.1.0 libgfortran/4.4.7 shelx/2015
 clhep/2.3.1.1 libtiff/4.0.4 shrimp/2.2.3
 clhep/2.3.4.4 (D) llvm/3.6 siesta/3.2
 cmake/3.0.1 llvm/3.7 simbody/3.5.3
 cmake/3.4.1 llvm/3.8.0 (D) snappy/1.1.3
 cmake/3.8.0 (D) lmod/5.6.2 sqlite/3.8.11.1
 connect-client/0.2.1 madgraph/2.1.2 sra/2.5.4
 connect-client/0.3.0 madgraph/2.2.2 (D) sra/2.8.0 (D)
 connect-client/0.4.0 matlab/2013b stashcp/2.6
 connect-client/0.5.3 (D) matlab/2014a stashcp/4.3.0
 cp2k/2.5.1 matlab/2014b stashcp/4.3.1 (D)
 cpan/perl-5.10 matlab/2015a stringtie/1.1.2
 cufflinks/2.2.1 matlab/2015b stringtie/1.2.2 (D)
 curl/7.37.1 matlab/2016a subversion/1.8.10
 dakota/6.4.0 matlab/2016b sundials/2.5
 dmtcp/2.5.0 matlab/2017a swift/0.94.1
 ectools matlab/2017b (D) swift/0.96.2 (D)
 eemt/0.1 mercurial/1.9.1 tassel/5.0
 eigen/3.2.10 mixmodlib/3.1 tcl/8.6.2
 einstein/Payne-Gaposchkin mono/4.2.1 tcsh/6.20.00
 elastix/2015 mothur/1.39.0 tophat/2.0.13
 entropy/2017.03.16 mpc/1.0.3 tophat/2.1.1 (D)
 espresso/5.1 mpfr/3.1.3 transabyss/1.5.5
 espresso/5.2 (D) mplayer/1.1 tutorial/1.0
 ete2/2.3.8 mrbayes/3.2.2 uclust/2.22
 expat/2.1.0 muscle/3.8.31 udunits/2.2.17
 ffmpeg/0.10.15 mysql/5.1.73 unixodbc/2.3.2
 ffmpeg/2.5.2 (D) namd/2.9 valgrind/3.10
 fftw/3.3.4-gromacs namd/2.10.cuda vmd/1.9.1
 fftw/3.3.4 (D) namd/2.10 (D) wget/1.15
 fiji/2.0 nco/4.3.0 wxgtk/3.0.2
 fpc/2.6.4 netcdf/4.2.0 xrootd/4.1.1
 freesurfer/5.1.0 ngsTools/2017.03.16 xrootd/4.2.1 (D)
 freesurfer/5.3.0 octave/3.8.1 xz/5.2.2
 freesurfer/6.0.0 (D) openbabel/2.3.2 zlib/1.2.8

OSG Software tutorials are available with

-bash-4.2$ module load tutorial

-bash-4.2$ tutorial
 :)

-bash-4.2$ tutorial tensorflow-matmul
-bash-4.2$ less ./tutorial-tensorflow-matmul/README.md

Other OSG Module environment tools

-bash-4.2$ less /cvmfs/oasis.opensciencegrid.org/osg/sw/module-init.sh
-bash-4.2$ less /cvmfs/oasis.opensciencegrid.org/osg/sw/rhel/7/lmod/6.3/init/profile

View your current module environmentals:
-bash-4.2$ env | grep MODULE

 Workflows

Workflows

Overview

Workflows offer benefits of automation and efficient orchestration (eg. data parallel execution) of multi-stage computation. Furthermore, they are powerful reproducibility and portability tools for science and engineering applications.

Typically, a workflow is written in a high level language that is offered and understood by a workflow management software or simply a workflow tool.

Workflow tools available on Condos

We currently offer support for the following workflow tools on HPC:

	Nextflow

	Makeflow

	Swift

A brief description about each of the aforementioned workflow tools is provided below:

NextflowNextflow [https://www.nextflow.io/docs/latest/index.html] is a favored workflow tool among Singularity container users. Similarly, it is popular among users from the Biosciences domain.

MakeflowThe Makeflow [http://ccl.cse.nd.edu/software/makeflow/] workflow system uses a Makefile like language to define workflows that may be deployed and executed over clusters and clouds.

SwiftSwift [http://swift-lang.org/Swift-T/index.php] uses a C-like syntax to define workflows. Swift is capable of stitching computational steps defined in the workflow as a true HPC workflow that uses the Message Passing Paradigm of parallel computation using the MPI libraries and its own load balancer.

📝 Note: While Nextflow and Makeflow require additional configuration if you wish to run them on compute nodes, Swift can run directly on compute nodes by simply plugging it into a job definition script just like any other MPI application.

Example Workflows

Hello World

Nextflow

#!/usr/bin/env nextflow

params.str = 'Hello world!'

process splitLetters {

 output:
 file 'chunk_*' into letters mode flatten

 """
 printf '${params.str}' | split -b 6 - chunk_
 """
}

process convertToUpper {

 input:
 file x from letters

 output:
 stdout result

 """
 cat $x | tr '[a-z]' '[A-Z]'
 """
}

result.subscribe {
 println it.trim()
}

Save the above code in a file, eg. hello.nf. To run the workflow on open condo login node, do the following:

$ module purge
$ module load PE-gnu
$ module load java/1.8.0_131
$ module load nextflow
$ nextflow run hello.nf

You should see output similar to the following:

N E X T F L O W ~ version 0.27.6
Launching `nextflow_example.nf` [insane_meucci] - revision: 5319db7b93
[warm up] executor > local
[f9/cb98ba] Submitted process > splitLetters
[94/6ed3f3] Submitted process > convertToUpper (1)
[cb/506a85] Submitted process > convertToUpper (2)
HELLO
WORLD!

Makeflow

A “Hello World” in Makeflow would look something like so:

ECHO=/bin/echo

hello.txt:
 $ECHO 'Hello World!' > hello.txt

Save the above code in a file, say hello.mkf and run it on the open condo like so:

$ module load PE-gnu
$ module load cctools/6.2.7
$ makeflow hello.mkf

If all goes well, the output should look like so:

parsing hello.mkf...
local resources: 32 cores, 128833 MB memory, 6893119 MB disk
max running local jobs: 32
checking hello.mkf for consistency...
hello.mkf has 1 rules.
recovering from log file hello.mkf.makeflowlog...
makeflow: hello.txt is reported as existing, but does not exist.
starting workflow....
submitting job: /bin/echo ''Hello World!'' > hello.txt
submitted job 123822
job 123822 completed
nothing left to do.

And you should see a new file called hello.txt in your current working directory.

Swift

A Swift Hello World workflow looks like so:

import io;

printf("Hello world");

Swift uses two steps to workflow execution: compile and run.

Load the swift module on condo like so:

$ module purge
$ module load PE-gnu
$ module load java/1.8.0_131 mpich/3.2
$ module load swift

Compile and run the workflow like so:

$ stc hello.swift

The above step will produce a TCL file called hello.tic. Run the TCL file like so:

turbine -n 2 hello.tic

If all goes well, you should see the following output:

Hello world

General remarks

	Note that the above workflows will run on login nodes. In order for them to run over compute nodes, more configuration is needed.

	Note that Nextflow expects absolute paths for data and executables since it works in its own temp directory. Please adjust the paths to where you choose to run the workflow.

Where to go from here?

	Use the Crystal Workflow [https://github.com/wendikristine/documentation-template/tree/62a326e16ecef2ff128ef0b976de12c16f6ea062/using-the-hpc/how-to-use/condo-crystal-workflow] with these workflow tools.

	Come talk to us at cad if you think one or more of your applications will benefit with the help of the aforementioned workflow tools.

 Crystal Workflow

Crystal Workflow

CrystalFlow is a hypothetical workflow with low-medium complexity that adequately illustrates the benefits and characteristics of scientific computational workflows.

📝 Note: The code, executables, and test data for the crystal workflow is available on Univ’s public GitLab [https://code.univ.edu/km0/cad_workflows].

About the Crystal Workflow

The workflow is a crystal shaped graph as shown in the figure below.

[image: ../../../_images/crystal-workflow-mermaid.png] [https://github.com/wendikristine/documentation-template/tree/62a326e16ecef2ff128ef0b976de12c16f6ea062/using-the-hpc/screenshots/crystal-workflow-mermaid.png]

In the above workflow, each of the boxes represent process and arrows represent the dependency between connected processes. For example, process P1 produces a data file that is consumed by processes P2 and P3.

Each of the 6 processes of this workflow are implemented in C and bash. Either may be used in the workflows shown below. The initial input file is pre-prepared. The code and data for these workflows are available on open HPC condo at /software/T/B/D. A Makefile will build the C executables found in the directory named c. The following sections show how this workflow may be orchestrated using each of the three workflow management tools.

Nextflow

The following code snippet shows how the above workflow would be expressed in Nextflow.

#!/usr/bin/env nextflow

in1 = file('/home/km0/crystalworkflow/shell/inputs/in1.txt')

process p1 {
 input:
 file in1
 output:
 file 'out1.txt' into out1
 """
 ~/crystalworkflow/shell/p1/p1.sh $in1 'out1.txt'
 """
}

process p2 {
 input:
 file out1
 output:
 file 'out2.txt' into out2
 """
 ~/crystalworkflow/shell/p2/p2.sh $out1 'out2.txt'
 """
}

process p3 {
 input:
 file out1
 output:
 file 'out3.txt' into out3
 """
 ~/crystalworkflow/shell/p3/p3.sh $out1 'out3.txt'
 """
}

process p4 {
 input:
 file out2
 output:
 file 'out4.txt' into out4
 """
 ~/crystalworkflow/shell/p4/p4.sh $out2 'out4.txt'
 """
}
process p5 {
 input:
 file out3
 output:
 file 'out5.txt' into out5
 """
 ~/crystalworkflow/shell/p5/p5.sh $out3 'out5.txt'
 """
}
process p6 {
 input:
 file out4
 file out5
 output:
 file 'out6.txt' into out6
 """
 ~/crystalworkflow/shell/p6/p6.sh $out4 $out5 'out6.txt'
 """
}

Assuming the above workflow is saved in a file named crystal.nf, it could be run as follows:

$ module purge
$ module load PE-gnu
$ module load java/1.8.0_131
$ module load nextflow
$
$ nextflow run crystal.nf

N E X T F L O W ~ version 0.27.6
Launching `crystal.nf` [thirsty_allen] - revision: e3b42d107d
[warm up] executor > local
[db/d513da] Submitted process > p1
[89/e16494] Submitted process > p2
[c3/9d4ddd] Submitted process > p3
[0d/5406b9] Submitted process > p4
[cf/4b94bb] Submitted process > p5
[c2/3bae00] Submitted process > p6

Makeflow

The following code snippet shows how the crystal workflow would be implemented using Makeflow.

P1=../shell/p1/p1.sh
P2=../shell/p2/p2.sh
P3=../shell/p3/p3.sh
P4=../shell/p4/p4.sh
P5=../shell/p5/p5.sh
P6=../shell/p6/p6.sh

../shell/p1/out1.txt:
 $P1 ../shell/inputs/in1.txt ../shell/p1/out1.txt
../shell/p2/out2.txt:
 $P2 ../shell/p1/out1.txt ../shell/p2/out2.txt
../shell/p3/out3.txt:
 $P3 ../shell/p1/out1.txt ../shell/p3/out3.txt
../shell/p4/out4.txt:
 $P4 ../shell/p2/out2.txt ../shell/p4/out4.txt
../shell/p5/out5.txt:
 $P5 ../shell/p3/out3.txt ../shell/p5/out5.txt
../shell/outputs/out6.txt:
 $P6 ../shell/p4/out4.txt ../shell/p5/out5.txt ../shell/outputs/out6.txt

Assuming the above workflow is saved in a file named crystal.mkf, it could be executed like so:

$ module purge
$ module load PE-gnu
$ module load cctools/6.2.7
$ makeflow crystal.mkf
parsing crystal.mkf...
local resources: 32 cores, 128833 MB memory, 6593404 MB disk
max running local jobs: 32
checking crystal.mkf for consistency...
crystal.mkf has 6 rules.
starting workflow....
submitting job: ../shell/p6/p6.sh ../shell/p4/out4.txt ../shell/p5/out5.txt ../shell/outputs/out6.txt
submitted job 37132
submitting job: ../shell/p5/p5.sh ../shell/p3/out3.txt ../shell/p5/out5.txt
submitted job 37133
submitting job: ../shell/p4/p4.sh ../shell/p2/out2.txt ../shell/p4/out4.txt
submitted job 37134
submitting job: ../shell/p3/p3.sh ../shell/p1/out1.txt ../shell/p3/out3.txt
submitted job 37135
submitting job: ../shell/p2/p2.sh ../shell/p1/out1.txt ../shell/p2/out2.txt
submitted job 37136
submitting job: ../shell/p1/p1.sh ../shell/inputs/in1.txt ../shell/p1/out1.txt
submitted job 37137
cat: ../shell/p3/out3.txt: No such file or directory
p3 completed.
p5 completed.
p4 completed.
job 37135 completed
p1 completed.
p2 completed.
job 37134 completed
job 37133 completed
job 37136 completed
job 37137 completed
p6 completed.
job 37132 completed
nothing left to do.

Swift

The following code snippet shows the Swift implementation of the crystal workflow. Note that the Swift implementation invokes the C version of executables but it can equally invoke the bash version.

import io;

app (file out) p1 (file inp){ "../c/p1/p1" inp out }

app (file out) p2 (file inp){ "../c/p2/p2" inp out }

app (file out) p3 (file inp){ "../c/p3/p3" inp out }

app (file out) p4 (file inp){ "../c/p4/p4" inp out }

app (file out) p5 (file inp){ "../c/p5/p5" inp out }

app (file out) p6 (file inp1, file inp2){ "../c/p6/p6" inp1 inp2 out }

file in1 = input("../c/inputs/in1.txt");

file out1 <"../c/p1/out1.txt"> = p1(in1);
file out2 <"../c/p2/out2.txt"> = p2(out1);
file out3 <"../c/p3/out3.txt"> = p3(out1);
file out4 <"../c/p4/out4.txt"> = p4(out2);
file out5 <"../c/p5/out5.txt"> = p5(out3);
file out6 <"../c/outputs/out6.txt"> = p6(out4,out5);

Assuming the above program is saved in a file called crystal.swift, it may be run on Open HPC like so:

$ module purge
$ module load PE-gnu
$ module load java/1.8.0_131 mpich/3.2
$ module load swift

$ stc crystal.swift

$ turbine -n 2 crystal.tic
../c/p1/out1.txt
../c/p3/out3.txt
../c/p2/out2.txt
../c/p5/out5.txt
../c/p4/out4.txt
../c/outputs/out6.txt

 description: You can access pre-installed software or install your own

description: You can access pre-installed software or install your own

Access Software

Modules are a utility which allow users to load and manage applications and their versions. The modules of software packages allow you to dynamically modify your user environment by using “modulefiles.” Each modulefile contains the information needed to configure the shell for an application. After the module software package is initialized, the environment can be modified on a per-module basis using the module command, which interprets modulefiles. Typically, modulefiles instruct the module command to change or set shell environment variables such as PATH, MANPATH, and others. The modulefiles can be shared by many users on a system.

Note: Some modules cannot be used simultaneously, such as an Intel compiler and a GNU compiler. If you attempt to load a module that is incompatible with a currently-loaded module, you will be prompted of the conflict. To avoid the error, you may have to unload or switch modules.

Default Software Stack

LMOD modules are used to provision the software environment for users. The default software stack is built on GNU 8.3.0 and OpenMPI 3.1.3 MPI library.

$user@hpc[~] module list

Currently Loaded Modules:
 1) autotools 2) prun/1.2 3) gnu8/8.3.0 4) openmpi3/3.1.3 5) ohpc

Switching Software Stacks

However, you may choose to a different software stack built on a different compiler and MPI library combination. It is advisable to stick with one combination of compiler and MPI library for most of your software to avoid conflicts.

You can switch to a software stack based on GNU7 compilers and OpenMPI3 libraries or Intel compilers and OpenMPI3 libraries easily using the module swap option.

GNU7-OpenMPI3 Stack

$user@hpc[~] module swap gnu8 gnu7

The following have been reloaded with a version change:
 1) openmpi3/3.1.3 => openmpi3/3.1.0

$user@hpc[~] module list

Currently Loaded Modules:
 1) autotools 2) prun/1.2 3) ohpc 4) gnu7/7.3.0 5) openmpi3/3.1.0

Intel-OpenMPI3 Stack

$user@hpc[~] module swap gnu8 intel

Due to MODULEPATH changes, the following have been reloaded:
 1) openmpi3/3.1.3

$user@hpc[~] module list

Currently Loaded Modules:
 1) autotools 2) prun/1.2 3) ohpc 4) intel/19.0.3.199 5) openmpi3/3.1.3

You can see a list of all available modules using the module avail command.

$user@host[~] module avail

-- /opt/ohpc/pub/moduledeps/gnu8-openmpi3 --
 adios/1.13.1 fftw/3.3.8 mpiP/3.4.1 netcdf/4.6.2 pnetcdf/1.11.0 py3-mpi4py/3.0.0 scorep/4.1 tau/2.28
 boost/1.69.0 hypre/2.15.1 mumps/5.1.2 opencoarrays/2.2.0 ptscotch/6.0.6 py3-scipy/1.2.1 sionlib/1.7.2 trilinos/12.12.1
 dimemas/5.3.4 imb/2018.1 netcdf-cxx/4.3.0 petsc/3.10.3 py2-mpi4py/3.0.0 scalapack/2.0.2 slepc/3.10.2
 extrae/3.5.2 mfem/3.4 netcdf-fortran/4.4.5 phdf5/1.10.4 py2-scipy/1.2.1 scalasca/2.4 superlu_dist/6.1.1

-- /opt/ohpc/pub/moduledeps/gnu8 ---
 hdf5/1.10.4 likwid/4.3.3 mpich/3.3 ocr/1.0.1 openmpi3/3.1.3 (L) py2-numpy/1.15.3 superlu/5.2.1
 impi/2019.3.199 metis/5.1.0 mvapich2/2.3 openblas/0.3.5 pdtoolkit/3.25 py3-numpy/1.15.3

-- /opt/ohpc/pub/modulefiles ---
 EasyBuild/3.7.1 clustershell/1.8 gnu7/7.3.0 intel/19.0.3.199 papi/5.6.0 singularity/2.6.0
 autotools (L) cmake/3.12.2 gnu8/8.3.0 (L) llvm5/5.0.1 pmix/2.1.4 valgrind/3.13.0
 charliecloud/0.9.2 cuda/9.2 hwloc/1.11.10 ohpc (L) prun/1.2 (L)

 Where:
 L: Module is loaded

Summary of Module Commands

Command	Description
:—	:—
module list	Lists modules currently located in user’s environment
module avail	Lists all available modules on a system in condensed format
module avail -l	Lists all available modules on a system in long format
module display	Shows environment changes that will be made by loading a given module
module load	Loads a module
module unload	Unloads a module
module help	Shows help for a module
module swap	Swaps a currently loaded module for an unloaded module

Modules: Local repositoryBy default the local repository is used as a source of software installations. To list available modules, type module avail. To load a module, use module load module_name. Similarly, unload modules by typing module unload module_name.

Available Modules

To see a list of available modules, type

$user@host[~] module avail

📝 Note: If you need a module that is not available, please contact us [https://github.com/hpc-cofc/documentation/tree/660cbe68265541127a5250a6a7a53aa040d21f19/support].

You can check for the existence of a module and its versions using module avail <module-name>.

$user@host[~] module avail cuda

----------------- /software/dev/modulefiles -----------------
cuda/9.2 cuda/10.1(default)

Working with Modules

When you load a module, your environment is modified to use a specific software package. To load a module:

$user@host[~] module load chem/vmd

To verify your module has loaded, you can type module list.

To display information about the attributes of the module such as the size of the module, the compiler or the source from which the module was created, etc., use the following command:

$user@host[~] module display your_module

Removing and Switching Modules

Unloading a module will avoid conflict and/or messages of failure due to different versions or dependencies.

$user@host[~] module unload cuda/10.1

Switching between different module versions can accomplish the task of having to load, unload and load modules in multiple steps. In the following example, cuda/9.2 is currently loaded. After running the command, cuda/10.1 is unloaded and cuda/9.2 is loaded.

$user@host[~] module switch cuda/10.1 cuda/9.2

You can unload all the modules on your environment, by executing the module purge command:

$user@host[~] module purge

 Software List

Software List

List of available software (as of 02/03/2020)

You can always get a list of all available modules by entering module spider. Here is the current list:

Application	Versions	Description
:—	:—	:—
EasyBuild	EasyBuild/3.7.1	Build and installation framework
R	R/3.4.2, R/3.5.0, R/3.5.2	R is a language and environment for statistical computing and graphics (S-Plus like).
adios	adios/1.12.0, adios/1.13.1	The Adaptable IO System (ADIOS)
anaconda2	anaconda2/2019.03	
anaconda3	anaconda3/2019.03, anaconda3/2019.10	
autotools	autotools	Developer utilities
bio/angsd	bio/angsd/0.931	a powerful toolset for genome arithmetic
bio/bcftools	bio/bcftools/1.9	BCFtools are meant as a faster replacement for most of the perl VCFtools commands.
bio/bedtools	bio/bedtools/2.29.0	a powerful toolset for genome arithmetic
bio/bowtie	bio/bowtie/1.2.3	an ultrafast, memory-efficient short read aligner
bio/bowtie2	bio/bowtie2/2.3.5.1	an ultrafast, memory-efficient short read aligner
bio/bwa	bio/bwa/0.7.17	a software package for mapping DNA sequences against a large reference genome
bio/hisat2	bio/hisat2/2.1.0	an ultrafast and memory-efficient tool for aligning sequencing reads to long reference sequences
bio/htslib	bio/htslib/1.9	htslib are meant as a faster replacement for most of the perl VCFtools commands.
bio/minimap2	bio/minimap2/2.12	A versatile pairwise aligner for genomic and spliced nucleotide sequences
bio/mothur	bio/mothur/1.43.0	mothur is a single piece of open-source, expandable software to fill the bioinformatics needs of the microbial ecology community
bio/ncbi-blast+	bio/ncbi-blast+/2.10.0	a powerful local alignment and search tool
bio/ngstools	bio/ngstools/2019	Programs to analyse NGS data for population genetics purposes
bio/samtools	bio/samtools/1.9	Tools (written in C using htslib) for manipulating next-generation sequencing data
bio/stacks	bio/stacks/2.41	Stacks is a software pipeline for building loci from short-read sequences, such as those generated on the Illumina platform
bio/vcftools	bio/vcftools/0.1.16	Perl and C++ tools for working with VCF files
bio/vsearch	bio/vsearch/2.14.2	A faster version of usearch for the bioinformatics needs of the microbial ecology community
boost	boost/1.66.0, boost/1.67.0, boost/1.69.0	Boost free peer-reviewed portable C++ source libraries
charliecloud	charliecloud/0.9.2	Lightweight user-defined software stacks for high-performance computing
chem/aimall	chem/aimall/19_02_13	Tools for using Bader’s Atoms-in-Molecules (AIM) tools by Todd A. Keith
chem/amber	chem/amber/18-cpu, chem/amber/18-gpu	Application for computational chemistry and biochemistry
chem/chimera	chem/chimera	Application for computational chemistry modeling and visualization
chem/gamess	chem/gamess/2018-R2	Application for computational chemistry
chem/gaussian	chem/gaussian/09-D.01, chem/gaussian/16-B.01	Application for computational chemistry
chem/jmol	chem/jmol	Application for molecular modeling
chem/mopac	chem/mopac/2016	Application for computational chemistry
chem/mercury	chem/mercury/4.3.1	CCSD’s crystallographic analysis tools; community version
chem/orca	chem/orca/4.1.2, chem/orca/4.2.0, chem/orca/4.2.1	Application for computational chemistry
chem/psi4conda	chem/psi4conda/1.3.1	Application for computational chemistry and biochemistry
chem/vmd	chem/vmd/1.9.3	Application for visualizations of molecular structures, trajectories surfaces, crystals …
chem/xtb	chem/xtb/6.2.2	Application for computational chemistry and biochemistry
clustershell	clustershell/1.8	VIM files for ClusterShell
cm1	cm1/19.8-omp	Atmospheric physics simulation package
cmake	cmake/3.12.2	CMake is an open-source, cross-platform family of tools designed to build, test and package software.
cuda	cuda/9.2, cuda/10.1	CUDA Compiler and Library
dimemas	dimemas/5.3.4	Dimemas tool
extrae	extrae/3.5.2	Extrae tool
fftw	fftw/3.3.7, fftw/3.3.8	A Fast Fourier Transform library
gdal	gdal/2.2.3	A GIS format library
geopm	geopm/0.6.1	Global Extensible Open Power Manager
geos	geos/3.7.2	GEOS (Geometry Engine - Open Source) is a C++ port of the Topology Suite (JTS)
gnu	gnu/5.4.0	GNU Compiler Family (C/C++/Fortran for x86_64)
gnu7	gnu7/7.3.0	GNU Compiler Family (C/C++/Fortran for x86_64)
gnu8	gnu8/8.3.0	GNU Compiler Family (C/C++/Fortran for x86_64)
gsl	gsl/1.15, gsl/2.4, gsl/2.5	GNU Scientific Library (GSL)
hdf5	hdf5/1.10.2, hdf5/1.10.4	A general purpose library and file format for storing scientific data
hwloc	hwloc/1.11.10	Portable Hardware Locality
hypre	hypre/2.13.0, hypre/2.14.0, hypre/2.15.1	Scalable algorithms for solving linear systems of equations
imb	imb/2018.1	Intel MPI Benchmarks (IMB)
impi	impi/2019.3.199	Intel MPI Library (C/C++/Fortran for x86_64)
intel	intel/19.0.3.199	Intel Compiler Family (C/C++/Fortran for x86_64)
likwid	likwid/4.3.3	Toolsuite of command line applications for performance oriented programmers
llvm5	llvm5/5.0.1	LLVM Compiler Infrastructure
math/mathematica	math/mathematica/12.0	Application for symbolic and numerical computation
math/matlab	math/matlab/r2017b, math/matlab/r2018a, math/matlab/r2018b, math/matlab/r2019a, math/matlab/r2019b	Application for numerical simulations
metis	metis/5.1.0	Metis development files
mfem	mfem/3.4	Lightweight, general, scalable C++ library for finite element methods
miniconda2	miniconda2/4.7.10	
miniconda3	miniconda3/4.7.10	
mkl	mkl/19.0.3.199	Intel Math Kernel Library for C/C++ and Fortran
mpiP	mpiP/3.4.1	mpiP a lightweight profiling library for MPI applications.
mpich	mpich/3.2.1, mpich/3.3	MPICH MPI implementation
mumps	mumps/5.1.2	A MUltifrontal Massively Parallel Sparse direct Solver
mvapich2	mvapich2/2.2, mvapich2/2.3	OSU MVAPICH2 MPI implementation
netcdf	netcdf/4.5.0, netcdf/4.6.1, netcdf/4.6.2	C Libraries for the Unidata network Common Data Form
netcdf-cxx	netcdf-cxx/4.3.0	C++ Libraries for the Unidata network Common Data Form
netcdf-fortran	netcdf-fortran/4.4.4, netcdf-fortran/4.4.5	Fortran Libraries for the Unidata network Common Data Form
numpy	numpy/1.12.1	NumPy array processing for numbers, strings, records and objects
ocr	ocr/1.0.1	Open Community Runtime (OCR) for shared memory
ohpc	ohpc	
openblas	openblas/0.2.20, openblas/0.3.5	An optimized BLAS library based on GotoBLAS2
opencoarrays	opencoarrays/2.2.0	ABI to leverage the parallel programming features of the Fortran 2018 DIS
openmpi	openmpi/1.10.7	A powerful implementation of MPI
openmpi3	openmpi3/3.1.0, openmpi3/3.1.3	A powerful implementation of MPI
papi	papi/5.6.0	Performance Application Programming Interface
pdtoolkit	pdtoolkit/3.25	PDT is a framework for analyzing source code
petsc	petsc/3.8.3, petsc/3.10.3	Portable Extensible Toolkit for Scientific Computation
phdf5	phdf5/1.10.1, phdf5/1.10.2, phdf5/1.10.4	A general purpose library and file format for storing scientific data
plasma	plasma/2.8.0	Parallel Linear Algebra Software for Multicore Architectures
pmix	pmix/2.1.4	
pnetcdf	pnetcdf/1.9.0, pnetcdf/1.11.0	A Parallel NetCDF library (PnetCDF)
proj	proj/5.2.0	A geospatial coordinate transformation software
prun	prun/1.2	job launch utility for multiple MPI families
ptscotch	ptscotch/6.0.6	Graph, mesh and hypergraph partitioning library using MPI
py2-mpi4py	py2-mpi4py/3.0.0	Python bindings for the Message Passing Interface (MPI) standard.
py2-numpy	py2-numpy/1.15.3	NumPy array processing for numbers, strings, records and objects
py2-scipy	py2-scipy/1.2.1	Scientific Tools for Python
py3-mpi4py	py3-mpi4py/3.0.0	Python bindings for the Message Passing Interface (MPI) standard.
py3-numpy	py3-numpy/1.15.3	NumPy array processing for numbers, strings, records and objects
py3-scipy	py3-scipy/1.2.1	Scientific Tools for Python
python-intel	python-intel/2.7.15, python-intel/3.6.8	Python is cross-platform interpreted language. This version is optimzed by Intel
rstudio	rstudio/1.2.1335, rstudio/1.2.1555	RStudio provides a GUI for running R which is a language and environment for statistical computing and graphics (S-Plus like).
scalapack	scalapack/2.0.2	A subset of LAPACK routines redesigned for heterogenous computing
scalasca	scalasca/2.3.1, scalasca/2.4	Toolset for performance analysis of large-scale parallel applications
scipy	scipy/0.19.1	Scientific Tools for Python
scorep	scorep/3.1, scorep/4.1	Scalable Performance Measurement Infrastructure for Parallel Codes
scotch	scotch/6.0.6	Graph, mesh and hypergraph partitioning library
singularity	singularity/3.4.1	Application and environment virtualization
sionlib	sionlib/1.7.1, sionlib/1.7.2	Scalable I/O Library for Parallel Access to Task-Local Files
slepc	slepc/3.10.2	A library for solving large scale sparse eigenvalue problems
spack	spack/0.12.1	Spack package management
superlu	superlu/5.2.1	A general purpose library for the direct solution of linear equations
superlu_dist	superlu_dist/4.2, superlu_dist/6.1.1	A general purpose library for the direct solution of linear equations
tau	tau/2.27, tau/2.28	Tuning and Analysis Utilities Profiling Package
trilinos	trilinos/12.12.1	A collection of libraries of numerical algorithms
use.own	use.own	
valgrind	valgrind/3.13.0	Memory debugging utilities
visit	visit/2.13.2, visit/3.0.2	VisIT is a parallel visualization suite based on VTK

New software is being installed constantly. Please run module spider to see the latest list of available software on the cluster.

Provisioning software using Lmod modules

Our cluster uses Lmod [https://lmod.readthedocs.io], a Lua-based environmental module system, to prepare the necessary environment to run your applications. It sets up proper paths to applications, libraries and header files, and allows you to change them dynamically. Moreover, it keeps track of dependencies between different components needed to run applications and ensures you have the right environment for a successful run.

R as an example

Suppose I want to run a statistical analysis using R while taking full advantage of the powerful capabilities of the massively parallel architecture of the HPC. How would I go about it? Here is one way:

See what modules I have loaded by default

$user@host[~]: module list

Currently Loaded Modules:
 1) autotools 2) prun/1.2 3) gnu8/8.3.0 4) openmpi3/3.1.3 5) ohpc

Given that I don’t see R loaded by default, let me see if R is available on the cluster.

See what versions of R are available on the cluster

$user@host[~]: module spider R

 R:

 Description:
 A language and software environment for statistical programming

 Versions:
 R/3.4.2
 R/3.5.0
 R/3.5.2
 Other possible modules matches:
 charliecloud chem/amber chem/orca clustershell extrae hypre
 netcdf-fortran ocr opencoarrays parallel proj prun scorep
 singularity superlu superlu_dist trilinos valgrind

I see there are three versions of R. Let me get some detail on R/3.5.2

Get information about R/3.5.2 are available on the cluster

$user@host[~]: module spider R/3.5.2

 R: R/3.5.2

 Description:
 A language and software environment for statistical programming

 You will need to load all module(s) on any one of the lines below
 before the "R/3.5.2" module is available to load.

 gnu8/8.3.0
 intel/19.0.3.199

I see R/3.5.2 is available with the default gnu8/8.3.0 compiler toolchain or the more efficient intel/19.0.3.199 compiler toolchain. I’ll pick the gnu8/8.3.0 since it’s already loaded by default.

Load R/3.5.2 from gnu8 stack

$user@host[~]: module load R/3.5.

When I check what modules are loaded, I see that R/3.5.2 is indeed added.

$user@host[~]: module list

Currently Loaded Modules:
 1) autotools 2) prun/1.2 3) gnu8/8.3.0 4) openmpi3/3.1.3 5) ohpc
 6) gdal/2.2.3 7) proj/5.2.0 8) geos/3.7.2 9) gsl/2.5 10) openblas/0.3.5
 11) R/3.5.2

However, I see many other applications (gdal/2.2.3 , proj/5.2.0 , geos/3.7.2 , gsl/2.5 , openblas/0.3.5) that are loaded simultaneously without my input. Why? Because some packages in R/3.5.2 have external dependencies such as openblas for doing matrix operations and gdal for handling GIS data. Lmod modules have information about these dependencies and they use that to set up the right environment to run R/3.5.2

So, what do these Lmod module files look like? You can use the module show R/3.5.2 command to see the location and content of these module files.

$user@host[~]: module show R/3.5.2

 /opt/ohpc/pub/moduledeps/gnu8/R/3.5.2:

whatis("Name: R project for statistical computing built with the gnu8 compiler toolchain. ")
whatis("Version: 3.5.2 ")
whatis("Category: utility, developer support, user tool ")
whatis("Keywords: Statistics ")
whatis("Description: R is a language and environment for statistical computing and graphics (S-Plus like). ")
whatis("URL http://www.r-project.org/ ")
load("gdal")
load("proj")
load("geos")
load("gsl")
prepend_path("PATH","/opt/ohpc/pub/libs/gnu8/R/3.5.2/bin")
prepend_path("MANPATH","/opt/ohpc/pub/libs/gnu8/R/3.5.2/share/man")
prepend_path("LD_LIBRARY_PATH","/opt/ohpc/pub/libs/gnu8/R/3.5.2/lib64")
prepend_path("LD_LIBRARY_PATH","/opt/ohpc/pub/libs/gnu8/R/3.5.2/lib64/R/library/Rcpp/libs")
setenv("R_DIR","/opt/ohpc/pub/libs/gnu8/R/3.5.2")
setenv("R_BIN","/opt/ohpc/pub/libs/gnu8/R/3.5.2/bin")
setenv("R_LIB","/opt/ohpc/pub/libs/gnu8/R/3.5.2/lib64")
setenv("R_SHARE","/opt/ohpc/pub/libs/gnu8/R/3.5.2/share")
depends_on("openblas")
help([[
This module loads the R package for statistical computing.

Version 3.5.2

]])

Run my R calculations and analysis

I can run R interactively on the head node for quick tests or submit more extensive calculations to run on the compute nodes via a batch scheduler (SLURM). Either way, I would need to load R using the module load R/3.5.2 command to

R as an example (Alternative)

An alternative way to see what software is available for my current software stack to enter module avail

$user@host[~]: module avail

----------------------- /opt/ohpc/pub/moduledeps/gnu8-openmpi3 -----------------------
 adios/1.13.1 mpiP/3.4.1 pnetcdf/1.11.0 scorep/4.1
 boost/1.69.0 mumps/5.1.2 ptscotch/6.0.6 sionlib/1.7.2
 dimemas/5.3.4 netcdf-cxx/4.3.0 py2-mpi4py/3.0.0 slepc/3.10.2
 extrae/3.5.2 netcdf-fortran/4.4.5 py2-scipy/1.2.1 superlu_dist/6.1.1
 fftw/3.3.8 netcdf/4.6.2 py3-mpi4py/3.0.0 tau/2.28
 hypre/2.15.1 opencoarrays/2.2.0 py3-scipy/1.2.1 trilinos/12.12.1
 imb/2018.1 petsc/3.10.3 scalapack/2.0.2
 mfem/3.4 phdf5/1.10.4 scalasca/2.4

--------------------------- /opt/ohpc/pub/moduledeps/gnu8 ----------------------------
 R/3.5.2 impi/2019.3.199 ocr/1.0.1 py2-numpy/1.15.3
 gdal/2.2.3 likwid/4.3.3 openblas/0.3.5 py3-numpy/1.15.3
 geos/3.7.2 metis/5.1.0 openmpi3/3.1.3 (L) superlu/5.2.1
 gsl/2.5 mpich/3.3 pdtoolkit/3.25
 hdf5/1.10.4 mvapich2/2.3 proj/5.2.0

----------------------------- /opt/ohpc/pub/modulefiles ------------------------------
 EasyBuild/3.7.1 cmake/3.12.2 papi/5.6.0
 autotools (L) cuda/9.2 parallel/2019
 charliecloud/0.9.2 cuda/10.1 (D) pmix/2.1.4
 chem/amber/18-cpu gnu/5.4.0 prun/1.2 (L)
 chem/amber/18-gpu (D) gnu7/7.3.0 python-intel/2.7.15
 chem/gamess/2018-R2 gnu8/8.3.0 (L) python-intel/3.6.8 (D)
 chem/gaussian/16-B.01 hwloc/1.11.10 singularity/2.6.0
 chem/mopac/2016 intel/19.0.3.199 use.own
 chem/orca/4.1.2 llvm5/5.0.1 valgrind/3.13.0
 clustershell/1.8 ohpc (L)

 Where:
 D: Default Module
 L: Module is loaded

Use "module spider" to find all possible modules.
Use "module keyword key1 key2 ..." to search for all possible modules matching any of
the "keys".

I see that there are is an R/3.5.2 module in the gnu8 stack I can load up using the module load R/3.5.2 command.

In fact, the software available to you depends a lot on the compiler and library toolchain you pick. The gnu8, gnu8-openmpi3, intel and intel-openmpi3 chains have the largest collection of applications on our cluster.

GNU8 + OpenMPI3

The default software has the following applications. More applications will be added upon request.

------------------------------ /opt/ohpc/pub/moduledeps/gnu8-openmpi3 -------------------------------
 adios/1.13.1 mpiP/3.4.1 pnetcdf/1.11.0 scorep/4.1
 boost/1.69.0 mumps/5.1.2 ptscotch/6.0.6 sionlib/1.7.2
 dimemas/5.3.4 netcdf-cxx/4.3.0 py2-mpi4py/3.0.0 slepc/3.10.2
 extrae/3.5.2 netcdf-fortran/4.4.5 py2-scipy/1.2.1 superlu_dist/6.1.1
 fftw/3.3.8 netcdf/4.6.2 py3-mpi4py/3.0.0 tau/2.28
 hypre/2.15.1 opencoarrays/2.2.0 py3-scipy/1.2.1 trilinos/12.12.1
 imb/2018.1 petsc/3.10.3 scalapack/2.0.2
 mfem/3.4 phdf5/1.10.4 scalasca/2.4

----------------------------------- /opt/ohpc/pub/moduledeps/gnu8 -----------------------------------
 R/3.5.2 likwid/4.3.3 mvapich2/2.3 openmpi3/3.1.3 (L) py3-numpy/1.15.3
 hdf5/1.10.4 metis/5.1.0 ocr/1.0.1 pdtoolkit/3.25 superlu/5.2.1
 impi/2019.3.199 mpich/3.3 openblas/0.3.5 py2-numpy/1.15.3

------------------------------------- /opt/ohpc/pub/modulefiles -------------------------------------
 EasyBuild/3.7.1 cmake/3.12.2 papi/5.6.0
 autotools (L) cuda/9.2 pmix/2.1.4
 charliecloud/0.9.2 gnu7/7.3.0 prun/1.2 (L)
 chem/gamess/2018-R2 gnu8/8.3.0 (L) singularity/2.6.0
 chem/gaussian/16-B.01 hwloc/1.11.10 use.own
 chem/mopac/2016 intel/19.0.3.199 valgrind/3.13.0
 chem/orca/4.1.2 llvm5/5.0.1
 clustershell/1.8 ohpc (L)

Intel + OpenMPI3

You can switch to from the default software stack build using GNU8 to one built using Intel compilers using modules: module swap gnu8 intel

The Intel 19 and OpenMPI3 software stack currently has the following packages.

------------------------------ /opt/ohpc/pub/moduledeps/intel-openmpi3 ------------------------------
 adios/1.13.1 mfem/3.4 pnetcdf/1.11.0 sionlib/1.7.2
 boost/1.69.0 mumps/5.1.2 ptscotch/6.0.6 slepc/3.10.2
 dimemas/5.3.4 netcdf-cxx/4.3.0 py2-mpi4py/3.0.0 superlu_dist/6.1.1
 extrae/3.5.2 netcdf-fortran/4.4.5 py3-mpi4py/3.0.0 tau/2.28
 geopm/0.6.1 netcdf/4.6.2 scalapack/2.0.2 trilinos/12.12.1
 hypre/2.15.1 petsc/3.10.3 scalasca/2.4
 imb/2018.1 phdf5/1.10.4 scorep/4.1

---------------------------------- /opt/ohpc/pub/moduledeps/intel -----------------------------------
 R/3.4.2 likwid/4.3.3 ocr/1.0.1 py2-numpy/1.15.3
 gdal/2.2.3 metis/5.1.0 openmpi3/3.1.3 (L) py3-numpy/1.15.3
 hdf5/1.10.4 mpich/3.3 pdtoolkit/3.25 scotch/6.0.6
 impi/2019.3.199 mvapich2/2.3 plasma/2.8.0 superlu/5.2.1

------------------------------------- /opt/ohpc/pub/modulefiles -------------------------------------
 EasyBuild/3.7.1 chem/orca/4.1.2 hwloc/1.11.10 prun/1.2 (L)
 autotools (L) clustershell/1.8 intel/19.0.3.199 (L) singularity/2.6.0
 charliecloud/0.9.2 cmake/3.12.2 llvm5/5.0.1 use.own
 chem/gamess/2018-R2 cuda/9.2 ohpc (L) valgrind/3.13.0
 chem/gaussian/16-B.01 gnu7/7.3.0 papi/5.6.0
 chem/mopac/2016 gnu8/8.3.0 pmix/2.1.4

GNU7 + OpenMPI3

You can switch to from the default software stack build using GNU7 to one built using GNU7 using modules: module swap gnu8 gnu7

The GNU7 and OpenMPI3 software stack currently has the following packages.

----------------------------------- /opt/ohpc/pub/moduledeps/gnu7 -----------------------------------
 R/3.5.0 hdf5/1.10.2 mpich/3.2.1 mvapich2/2.2 openblas/0.2.20 openmpi3/3.1.0 (L)

------------------------------------- /opt/ohpc/pub/modulefiles -------------------------------------
 EasyBuild/3.7.1 cmake/3.12.2 papi/5.6.0
 autotools (L) cuda/9.2 pmix/2.1.4
 charliecloud/0.9.2 gnu7/7.3.0 (L) prun/1.2 (L)
 chem/gamess/2018-R2 gnu8/8.3.0 singularity/2.6.0
 chem/gaussian/16-B.01 hwloc/1.11.10 use.own
 chem/mopac/2016 intel/19.0.3.199 valgrind/3.13.0
 chem/orca/4.1.2 llvm5/5.0.1
 clustershell/1.8 ohpc (L)

GNU + OpenMPI

If you have slightly older software that requires GNU5 compilers and OpenMPI1, you can switch from the default software stack build using GNU8 to one built using GNU5 using modules: module swap gnu8 gnu

The GNU and OpenMPI software stack currently has the following packages.

--------------------------------- /opt/ohpc/pub/moduledeps/gnu-openmpi ---------------------------------
 adios/1.12.0 mumps/5.1.2 phdf5/1.10.1 scorep/3.1 trilinos/12.12.1
 boost/1.66.0 netcdf-fortran/4.4.4 scalapack/2.0.2 sionlib/1.7.1
 fftw/3.3.7 netcdf/4.5.0 scalasca/2.3.1 superlu_dist/4.2
 hypre/2.13.0 petsc/3.8.3 scipy/0.19.1 tau/2.27

------------------------------------- /opt/ohpc/pub/moduledeps/gnu -------------------------------------
 gsl/2.4 mkl/19.0.3.199 numpy/1.12.1 openmpi/1.10.7 (L)
 impi/2019.3.199 mpich/3.2.1 ocr/1.0.1 pdtoolkit/3.25
 metis/5.1.0 mvapich2/2.2 openblas/0.2.20 superlu/5.2.1

-------------------------------------- /opt/ohpc/pub/modulefiles ---------------------------------------
 EasyBuild/3.7.1 cuda/9.2 pmix/2.1.4
 autotools (L) gnu/5.4.0 (L) prun/1.2 (L)
 charliecloud/0.9.2 gnu7/7.3.0 python-intel/2.7.15
 chem/gamess/2018-R2 gnu8/8.3.0 python-intel/3.6.8 (D)
 chem/gaussian/16-B.01 hwloc/1.11.10 singularity/2.6.0
 chem/mopac/2016 intel/19.0.3.199 use.own
 chem/orca/4.1.2 llvm5/5.0.1 valgrind/3.13.0
 clustershell/1.8 ohpc (L)
 cmake/3.12.2 papi/5.6.0

Other Applications and Utilities

The applications listed above are traditional HPC software that are stored in a central location that all storage and compute nodes can access. There are other system and utility applications stored locally on the login node as well as all compute and storage nodes.

How about Users’ Own Applications

You are welcome to install and run your own applications. Here are some useful tips

	It’s best to consistently stick with one compiler and MPI library if possible.

	To ease setting up the environment to run your own applications

	You can enter module load use.own to create a directory called privatemodules in your $HOME directory

	You can copy an example module file from /opt/ohpc/pub/examples/example.modulefile or /opt/ohpc/pub/examples/examplempi-dependent.modulefile and change it to match your application

Can Users Request Applications to be installed?

Absolutely. Please submit a TeamDynamix service request [https://cofc.teamdynamix.com/TDClient/Requests/ServiceDet?ID=35085] stating the application you need and any pertinent details and we will do our best to get the application available to you quickly.

Please note that some applications are trivial to install and test while others can be cumbersome. So, we can not guarantee a quick turn-around, but we will try to give you a reasonable timeline.

 Overview

Overview

Overview of CofC’s HPC Resources

The specs for the cluster are provided below.

HPC Cluster Specs in Brief

	Compute nodes

	10 standard compute nodes:

	2x 20-core 2.4GHz Intel Xeon Gold 6148 CPUs w/ 27MB L3 cache,

	192GB of DDR4 2667MHz RAM,

	1x 480GB of local SSD storage,

	Double precision performance ~ 2.8 TFLOPs/node

	1 large memory node:

	4x 20-core 2.4GHz Intel Xeon Gold 6148 CPUs w/ 27MB L3 cache,

	1536GB of DDR4 2667MHz RAM,

	2x 480GB of local SSD storage,

	Double precision performance ~ 5.6 TFLOPs/node

	2 GPU-containing nodes:

	2x 12-core 2.6GHz Intel Xeon Gold 6126 CPUs w/ 19MB L3 cache,

	192GB of DDR4 2667MHz RAM,

	480GB of local SSD storage,

	1 NVIDIA Tesla V100 16GB GPU

	Double precision performance ~ 1.8 + 7.0 = 8.8 TFLOPs/node

	Login/visualization node

	1 login and visualization node:

	2x 12-core 2.6GHz Intel Xeon Gold 6126 CPUs w/ 27MB L3 cache,

	192GB of DDR4 2667MHz RAM,

	3TB of local apps storage,

	1x NVIDIA Quadro P4000 8GB GPU

	Storage

	512TB NFS-shared, global, highly-available storage

	38TB NFS-shared, global fast NVMe-SSD-based scratch storage

	Interconnect [http://www.mellanox.com/page/products_dyn?product_family=192&mtag=sb7700_sb7790]

	Mellanox EDR Infiniband with 100Gb/s bandwidth

	Software stack

	OpenHPC 1.3.6

	CentOS 7.6

	Warewulf provisioning

	SLURM scheduler

	LMod modules for package management

	Workflow tools

In total, the cluster has a theoretical peak performance of 51 trillion floating point operations per second (TeraFLOPS). We will provide benchmarks based on standard High Performance LINPACK (HPL) at some point.

 Run Calculations

Run Calculations

To run calculations on the cluster, users need to have

	the code they plan to run

	any input it requires

	a way to sub the code using a batch scheduler

Managing Jobs

HPC utilizes SLURM to manage jobs that users submit to various queues on a computer system. Each queue represents a group of resources with attributes necessary for the queue’s jobs. You can see the list of queues that HPC has by typing sinfo. stdmemq is the default partition/queue.

Common Commands

The table below gives a short description of the most used SLURM commands.

Command	Description
:—	:—
squeue	reports the state of jobs (it has a variety of filtering, sorting, and formatting options), by default, reports the running jobs in priority order followed by the pending jobs in priority order
sbatch	submit a job script for later execution (the script typically contains one or more srun commands to launch parallel tasks)
scancel	cancel a pending or running job
sinfo	reports the state of partitions and nodes managed by SLURM (it has a variety of filtering, sorting, and formatting options)
sacct	report job accounting information about active or completed jobs
srun	used to submit a job for execution in real time
salloc	allocate resources for a job in real time (typically used to allocate resources and spawn a shell, in which the srun command is used to launch parallel tasks)

Note: Do not run jobs on the login nodes. All jobs launched from those nodes will be terminated without notice.

Listing jobs

To list all jobs:

$user@host[~]: squeue
 JOBID PARTITION NAME USER STATE TIME TIME_LIMI CPUS NODES NODELIST(REASON)
4340 gpuq testjob1 user1 RUNNING 2-03:06:55 4-00:00:00 2 1 gpu1
4349 stdmemq testjob2 user2 RUNNING 1:36:09 2-00:00:00 2 1 compute1
4347 bigmemq testjob3 user2 RUNNING 18:34:07 2-00:00:00 40 1 bigmem1

To list your jobs:

$user@host[~]: squeue -u $USER

To obtain the status of a job, run the following command using the job’s ID number (this is provided at time of job submission).

$user@host[~]: squeue -j JOB_ID

You can also use checkjob job_ID to show the current status of the job.

Submitting a job

To submit a job, use the sbatch command, followed by the name of your submission file. A Job ID will be provided. You may want to make note of the ID for later use.

$user@host[~]: sbatch your_script.slurm
Submitted batch job 4359

Deleting a job

Note: Be aware that deleting a job cannot be undone. Double check the job ID before deleting a job.

Users can delete their jobs by typing the following command.

$user@host[~]: scancel JOB_ID

To delete all the jobs of a user:

$user@host[~]: scancel -u $USER

Overview of resources

The sinfo command gives an overview of what resources are in each partition/queue and what their status is. It should inform your decisions on how you structure your jobs and what partition you should submit them to.

$user@host[~]: sinfo
PARTITION AVAIL TIMELIMIT NODES STATE NODELIST
stdmemq* up 2-00:00:00 1 mix bigmem1
stdmemq* up 2-00:00:00 10 mix compute[1-8],gpu[1-2]
stdmemq-long up 4-00:00:00 1 mix bigmem1
bigmemq up 2-00:00:00 1 mix bigmem1
gpuq up 4-00:00:00 1 mix gpuv1001
gpuq up 4-00:00:00 1 idle gpuv1002
debugq up 2:00:00 1 mix gpuv1001
debugq up 2:00:00 3 idle gpu[1-2],gpuv1002
scavengeq up 1-00:00:00 2 mix bigmem0,gpuv1001

You can format that output in a more concise form:

$user@host[~]: sinfo -o "%20P %5a %.10l %16F"
PARTITION AVAIL TIMELIMIT NODES(A/I/O/T)
stdmemq* up 2-00:00:00 1/10/0/11
stdmemq-long up 4-00:00:00 1/2/0/3
bigmemq up 2-00:00:00 1/0/0/1
gpuq up 4-00:00:00 1/1/0/2
debugq up 2:00:00 1/3/0/4
scavengeq up 1-00:00:00 2/11/0/13

Status of past and current jobs

The sacct command gives some accounting details on past and current jobs.

$user@host[~]: sacct
4359 jredo-0.x+ bigmemq (null) 0 COMPLETED 0:0
4360 jredo-0.x+ bigmemq (null) 0 CANCELLED 0:0
.
.
.

You can format that output in a more detailed form:

$user@host[~]: sacct --format=jobid,user,jobname,partition,end,Elapsed,State
4359 user jredo-0.x+ bigmemq 2019-08-07T15:03:15 00:00:10 COMPLETED
4360 user jredo-0.x+ bigmemq 2019-08-07T15:03:42 00:00:05 CANCELLED

SLURM environmental variables

When a SLURM job is scheduled to run, some relevant information about the job such as the names of the nodes it is running on, the number of cores, the working directory … etc … are saved as environmental variables. Users can invoke these environmental variables in their job submission scripts.

Below is a list of the most common SLURM environmental variables including with a brief description from UMD’s HPC page [https://www.glue.umd.edu/hpcc/help/slurmenv.html].

SLURM Variable Name	Description	Example values	PBS/Torque analog
:—	:—	:—	:—
$SLURM_JOB_ID	Job ID	5741192	$PBS_JOBID
$SLURM_JOB_NAME	Job Name	myjob	$PBS_JOBNAME
$SLURM_SUBMIT_DIR	Submit Directory	/home/user/testdir	$PBS_O_WORKDIR
$SLURM_JOB_NODELIST	Nodes assigned to job	compute[1-3]	cat $PBS_NODEFILE
$SLURM_SUBMIT_HOST	Host submitted from	login-hpc.cofc.edu	$PBS_O_HOST
$SLURM_JOB_NUM_NODES	Number of nodes allocated to job	2 $PBS_NUM_NODES	
$SLURM_CPUS_ON_NODE	Number of cores/node	8,3	$PBS_NUM_PPN
$SLURM_NTASKS	Total number of cores for job	11	$PBS_NP
$SLURM_NODEID	Index to node running on relative to nodes assigned to job	0	$PBS_O_NODENUM
$SLURM_LOCALID	Index to core running on within node	4	$PBS_O_VNODENUM
$SLURM_PROCID	Index to task relative to job	0	$PBS_O_TASKNUM - 1

 Jupyter Notebooks

Jupyter Notebooks

Introduction

Anaconda’s distribution [https://www.anaconda.com/distribution/] of Python claims to be the most popular platform for data science and machine learning. It supports a lot of packages and has tools to easily manage these packages and environments. Some of its advantages include

	Ease of managing packages, dependences and environments using Conda

	Support for machine learning and deep learning models with scikit-learn, TensorFlow, and Theano

	Integration Dask, NumPy, pandas, and Numba for scalability

	Support for visualization and analysis tools such as Matplotlib, Bokeh, Datashader, and Holoviews

Below, we will describe how to run Anaconda’s version of Python on the CofC cluster using Jupyter Notebooks [https://www.jupyter.org]. You will start a Jupyter notebook server on a compute node from the command line and connect to your notebook using a local browser of your workstation/laptop. This documentation is based on an example at Harvard’s HPC FAS-RC [https://www.rc.fas.harvard.edu/jupyter-notebook-server-on-odyssey/]

General steps

Below are the steps involved in being able to run a Python notebook on our HPC using Anaconda Jupyter Notebooks

	First time set up

	Load the Anaconda environment. We have different anaconda2 and anaconda3 versions. It is best to use the latest one as long as there are no compatibility issues with the packages/libraries you intend to install and run.

	Create the kernel/environment you need. For example, you can install Python2 or Python3, or Haskell or Julia or R …etc environments depending on what codes you intend to use

	Since your anaconda environment is contained locally in your account (~/.conda) , you can install or uninstall these environments and any packages within them as necessary. You do not need a system administrator’s permission or input to manage these environments.

	Running applications

	Once you have the anaconda environment you need, you can

	load the anaconda2/anaconda3 module,

	activate the environment of choice

	start an interactive SLURM session to reserve a compute resource

	set up SSH port forwarding between the compute resource and your local computer (laptop/desktop)

	start a Jupyter Notebook

	access the Jupyter Notebook via your web browser on your local computer.

	run your notebook on the HPC as if it were on your local computer.

These steps may look complicated, but we have scripts that make everything easier. Everyone needs to go through the first time set up step below. After that, there is an easier way to run calculations using scripts, or a more involved way which outlines the actual steps that are incorporated into the scripts.

First time set up

The first time you use Anaconda and its distribution of Python/R, you need to perform the following tasks on the master/head node.

Anaconda versions

See what versions of Anaconda are available

$user@hpc[~]: module spider anaconda

 anaconda/3:
--
 Versions:
 anaconda/3/2019.03
 anaconda/3/2019.10
 anaconda/3/2020.02
--

 This module can be loaded directly: module load anaconda2/2019.03

--
 anaconda/2: anaconda/2/2019.03
--

 This module can be loaded directly: module load anaconda/2/2019.03

If you plan to run Python3 notebooks, load up the anaconda/3 module.

$user@hpc[~]: module load anaconda/3/2020.02

Python/R versions

Initially, only the base version of Anaconda is installed in a central/shared location. If you type conda env list, you will only see the base installation.

$user@hpc[~]: conda env list
conda environments:
#
base * /opt/ohpc/pub/apps/anaconda/3/2020.02

Depending on your needs, you would need to install specific versions of Python and R. Anaconda uses the conda tool to install packages and manage your software environment. In this particular case, we’ll install a Python 3.7 environment.

$user@hpc[~]: module load anaconda/3/2020.02

$user@hpc[~]: conda create -n myJupyter_3.7 python=3.7 jupyter

You will see that Python 3.7 has successfully installed by checking the list of available environments.

user@hpc[~]: conda env list
conda environments:
#
jupyter_3.7 /home/user/.conda/envs/myJupyter_3.7
base * /opt/ohpc/pub/apps/anaconda/3/2020.02

To activate this environment, you can use the following command:

$user@hpc[~]: source activate myJupyter_3.7

Running your notebook

After performing the tasks above once the first time you use Anaconda’s Python distribution, you will not need to repeat them. You can proceed with running your notebook the easy way using scripts or the more involved way, if you want more control and are up to the challenge. The steps go as follows:

	load the anaconda2/anaconda3 module,

	activate the environment of choice

	start an interactive SLURM session to reserve a compute resource

	set up SSH port forwarding between the compute resource and your local computer (laptop/desktop)

	start a Jupyter Notebook

	access the Jupyter Notebook via your web browser on your local computer.

	run your notebook on the HPC as if it were on your local computer.

The easy way using scripts

There are two interactive shell scripts that will allow you to run your notebooks. The steps are

	go to the location where your notebook resides

	reserve computer time to run your notebook (request-interactive.sh)

	start running your notebook to load up the Anaconda and Python environments easily (run-jupyter-notebook.sh)

Reserve computer time

Running a simple interactive shell script (reserve-interactive.sh) allows you to reserve resources to run your Jupyter Notebook as shown in the following example.

$user@hpc[~/test] request-interactive.sh

This script helps you start up an interactive SLURM session to reserve
computational resources the CofC HPC.

How many hours do you want to reserve a server for? Options: 1-48

2
 Reserving a node for 2 hours
How many computing cores do you need? Options: 1-40
4
 Requesting 4 core(s)
What name would you like to give this calculation? Eg. testML
0-test

Reserving computational resources using the following command
srun --wait=0 --pty -p stdmemq --ntasks=4 -t 2:00:00 -J test bash

 Please note that you should exit the notebook when you are finished.
 Otherwise, the queue manager will terminate the notebook when the time
 you reserved runs out.

Run your notebook

A simple interactive shell script (run-jupyter-notebook.sh) guides you through the process of initiating your Jupyter Notebook run.

$user@hpc[~/test] run-jupyter-notebook.sh

Which version of Anaconda would you like to run.
Enter selection [0-2]:

 1. anaconda2
 2. anaconda3
 0. Quit

2
 loading anaconda3 module

Currently Loaded Modules:
 1) autotools 2) prun/1.2 3) gnu8/8.3.0 4) openmpi3/3.1.3 5) ohpc 6) use.own 7) anaconda/3/2020.02

You have these environments to pick from

myJupyter_3.7 /home/user/.conda/envs/myJupyter_3.7
base * /opt/ohpc/pub/apps/anaconda/3/2020.02

Which environment would you like to use?

myJupyter_3.7

On your local computer (laptop/desktop), set up SSH port forwarding using the
following command.

 1. Open a second terminal
 2 Copy and paste the command below into the terminal on your local laptop/desktop.

 Please note that the terminal will 'hang' once the SSH tunnel is set up.
 So, you would not be able to interact with it.

 Please do not close the terminal as that would close the SSH port forwarding
 between your local computer and the HPC

Copy and paste the following command on your local computer:
ssh -NL 19620:hpc.cofc.edu:19620 user@hpc.cofc.edu

A Jupyter notebook will start up shortly. You will be given instructions such as this

 To access the notebook, open this file in a browser:
 file:///home/user/.local/share/jupyter/runtime/nbserver-9192-open.html
 Or copy and paste one of these URLs:
 http://...
 or http://...

When you are finished with your calculation
 1. Use 'Control-C' to stop this server and shut down all kernels
 (twice to skip confirmation).
 2. Log out of the compute node using by typing 'exit'
 3. Close the SSH port forwarding on your local computer by entering 'Control-C'

[I 19:04:17.442 NotebookApp] Loading IPython parallel extension
[I 19:04:17.443 NotebookApp] Serving notebooks from local directory: /home/user/test
[I 19:04:17.443 NotebookApp] The Jupyter Notebook is running at:
[I 19:04:17.443 NotebookApp] http://hpc.cofc.edu:19620/?token=c4bb51f28e8ee836d8101b02cb9d344c98967ea0a4e9d
[I 19:04:17.443 NotebookApp] or http://127.0.0.1:19620/?token=c4bb518ee836d8101b02cb9d344c98967ea0a4e9d
[I 19:04:17.443 NotebookApp] Use Control-C to stop this server and shut down all kernels (twice to skip confirmation).
[C 19:04:17.448 NotebookApp]

 To access the notebook, open this file in a browser:
 file:///home/user/.local/share/jupyter/runtime/nbserver-168451-open.html
 Or copy and paste one of these URLs:
 http://hpc.cofc.edu:19620/?token=c4bb51f20e68e8ee8cb9d344c98967ea0a4e9d
 or http://127.0.0.1:19620/?token=c4bb51f20e68e8ee836d810d344c98967ea0a4e9d
[I 19:04:33.423 NotebookApp] 302 GET /?token=c4bb51f20e68e8ee836d8101b02cb9d344c98967ea0a4e9d (172.16.0.1) 0.40ms
[E 19:04:33.466 NotebookApp] Could not open static file ''
[W 19:04:33.623 NotebookApp] 404 GET /static/components/react/react-dom.production.min.js (172.16.0.1) 5.19ms referer=http://127.0.0.1:19620/tree?token=c4bb51f20e68e8ee836d8101b02cb9d344c98967ea0a4e9d
[W 19:04:33.657 NotebookApp] 404 GET /static/components/react/react-dom.production.min.js (172.16.0.1) 0.87ms referer=http://127.0.0.1:19620/tree?token=c4bb51f20e68e8ee836d8101b02cb9d344c98967ea0a4e9d
[W 19:04:36.359 NotebookApp] 404 GET /static/components/react/react-dom.production.min.js (172.16.0.1) 1.63ms referer=http://127.0.0.1:19620/notebooks/Data_echo -e "
Cleaning_using_Python_with_Pandas_Library.ipynb
[W 19:04:36.436 NotebookApp] 404 GET /static/components/react/react-dom.production.min.js (172.16.0.1) 0.84ms referer=http://127.0.0.1:19620/notebooks/Data_Cleaning_using_Python_with_Pandas_Library.ipynb
[I 19:04:37.769 NotebookApp] Kernel started: 092b9b5f-4b02-4a97-8f11-d31d0076aed5
[I 19:04:38.153 NotebookApp] Adapting from protocol version 5.1 (kernel 092b9b5f-4b02-4a97-8f11-d31d0076aed5) to 5.3 (client).
[I 19:04:49.097 NotebookApp] Starting buffering for 092b9b5f-4b02-4a97-8f11-d31d0076aed5:fc649ff7bb2840438168f502ab8b5c0b
[I 19:04:49.309 NotebookApp] Kernel restarted: 092b9b5f-4b02-4a97-8f11-d31d0076aed5
[I 19:04:49.683 NotebookApp] Adapting from protocol version 5.1 (kernel 092b9b5f-4b02-4a97-8f11-d31d0076aed5) to 5.3 (client).
[I 19:04:49.684 NotebookApp] Restoring connection for 092b9b5f-4b02-4a97-8f11-d31d0076aed5:fc649ff7bb2840438168f502ab8b5c0b
[I 19:04:49.684 NotebookApp] Replaying 10 buffered messages
^C[I 19:05:25.752 NotebookApp] interrupted
Serving notebooks from local directory: /home/user/test
1 active kernel
The Jupyter Notebook is running at:
http://hpc.cofc.edu:19620/?token=c4bb51f20e68e8ee01b02cb9d344c98967ea0a4e9d
 or http://127.0.0.1:19620/?token=c4bb51f20e68e8eb02cb9d344c98967ea0a4e9d
Shutdown this notebook server (y/[n])? y
[C 19:05:28.171 NotebookApp] Shutdown confirmed
[I 19:05:28.173 NotebookApp] Shutting down 1 kernel
[I 19:05:28.474 NotebookApp] Kernel shutdown: 092b9b5f-4b02-4a97-8f11-d31d0076aed5

When you are finished with your calculation
 1. Use 'Control-C' to stop this server and shut down all kernels
 (twice to skip confirmation).
 2. Log out of the compute node using by typing 'exit'
 3. Close the SSH port forwarding on your local computer by entering 'Control-C'

The hard way

Run test on the master node

You are probably on the master/login node at this point and you can run quick, simple tests there. All your heavy calculations need to be submitted to a compute note using the SLURM batch scheduler. We’ll get to that in the next stage. For now, let’s do an interactive run on the master node.

Set up the calculation

On the server side

	Load up and activate the environment on the server/node

	$user@hpc[~]: module load anaconda/3/2020.02

$user@hpc[~]: conda activate myJupyter_3.7

	Set up forwarding of the notebook data over an unused port (say 10002)

	$user@hpc[~]: export myport=10002

	You can determine the exact port forwarding command by executing the command below: [1]

	$user@hpc[~]: echo "ssh -NL $myport:$(hostname):$myport $USER@hpc.cofc.edu"

	Start the notebook

	$user@hpc[~]: jupyter-notebook --no-browser --port=$myport --ip='0.0.0.0'

	You should see something like that looks like this:

$(jupyter_3.7) user@hpc[~]: jupyter-notebook --no-browser --port=$myport --ip='0.0.0.0'

[I 12 NotebookApp] Serving notebooks from local directory: /home/bt-local
[I 12 NotebookApp] The Jupyter Notebook is running at:
[I 12 NotebookApp] http://hpc.cofc.edu:10002/?token=7e2e36e849cb39150f32300ad7ac9253ed7f01
[I 12 NotebookApp] or http://127.0.0.1:10002/?token=7e2e36e849cb39150f32300ad7ac9253ed7f01
[I 12 NotebookApp] Use Control-C to stop this server and shut down all kernels (twice to skip confirmation).
[C 12 NotebookApp]

 To access the notebook, open this file in a browser:
 file:///home/user/.local/share/jupyter/runtime/nbserver-274617-open.html
 Or copy and paste one of these URLs:
 http://hpc.cofc.edu:10002/?token=7e2e36e849cb39150f32300ad7ac9253ed7f01
 or http://127.0.0.1:10002/?token=7e2e36e849cb39150f32300ad7ac9253ed7f01

Before you connect notebooks using the above URLs, you need to start SSH forwarding on your local desktop/laptop

On the client side (your laptop/desktop)

	In a new terminal on your laptop/desktop, start an SSH tunnel between the server (master node) and your local machine using the command from [1].

	It should look something like this:

	user@laptop[~]: ssh -NL 10002:hpc.cofc.edu:10002 $USER@hpc.cofc.edu

	
	You will be prompted for a password unless you have SSH keys already set up. Please note that you will not see any output if the connection is successful. Please keep the terminal alive and open your browser to access your notebook

	Point your browser to the URL provided above in [2]

	Eg. http://127.0.0.1:10002/?token=7e2e36e849cb39150f32300ad7ac9253ed7f01 [http://127.0.0.1:10002/?token=7efb536faedf2e36e849cb39150f32300ad7ac9253ed7f01]

Run on compute nodes interactively

You need to run your production calculations on compute nodes by first starting an interactive session.

Set up the calculation

On the server side

	Start an interactive session using a command like this:

	user@hpc[~]: srun --pty -p stdmemq -n 20 -t 00-08:00:00 --ntasks=1 --pty --mem=48000 bash

	Load up and activate the environment on the server/node

	user@hpc[~]: module load anaconda/3/2020.02
user@hpc[~]: conda activate myJupyter_3.7

	Set up forwarding of the notebook data over an unused port (say 10002)

	user@hpc[~]: export myport=10002

	You can determine the exact port forwarding command by executing the command below: [1]

	user@hpc[~]: echo "ssh -NL $myport:$(hostname):$myport $USER@hpc.cofc.edu"

	Start the notebook

	user@hpc[~]: jupyter-notebook --no-browser --port=$myport --ip='0.0.0.0'

You should see something like that looks like this:

$(jupyter_3.7) user@hpc[~] jupyter-notebook --no-browser --port=$myport --ip='0.0.0.0'

[I 12 NotebookApp] Serving notebooks from local directory: /home/bt-local
[I 12 NotebookApp] The Jupyter Notebook is running at:
[I 12 NotebookApp] http://host.cofc.edu:10002/?token=7e2e36e849cb39150f32300ad7ac9253ed7f01
[I 12 NotebookApp] or http://127.0.0.1:10002/?token=7e2e36e849cb39150f32300ad7ac9253ed7f01
[I 12 NotebookApp] Use Control-C to stop this server and shut down all kernels (twice to skip confirmation).
[C 12 NotebookApp]

 To access the notebook, open this file in a browser:
 file:///home/user/.local/share/jupyter/runtime/nbserver-274617-open.html
 Or copy and paste one of these URLs:
 http://host.cofc.edu:10002/?token=7e2e36e849cb39150f32300ad7ac9253ed7f01
 or http://127.0.0.1:10002/?token=7e2e36e849cb39150f32300ad7ac9253ed7f01

Before you connect notebooks using the above URLs, you need to start SSH forwarding on your local desktop/laptop

On the client side (your laptop/desktop)

	In a new terminal on your laptop/desktop, start an SSH tunnel between the server (master node) and your local machine using the command from [1]. It should look something like

	user@laptop[~] . ssh -NL 10001:hpc.cofc.edu:10002 $USER@hpc.cofc.edu

	You will be prompted for a password unless you have SSH keys already set up. Please note that you will not see any output if the connection is successful. Please keep the terminal alive and open your browser to access your notebook

	Point your browser to the URLs provided above

	Eg. http://127.0.0.1:10002/?token=7efb536faedf2e36e849cb39150f32300ad7ac9253ed7f01

 description: >- JupyterHub+JupyterLab provide a complete multi-user web interface to the HPC for interactive computing

description: >-
JupyterHub+JupyterLab provide a complete multi-user web interface to the HPC
for interactive computing

JupyterHub

Project Jupyter Overview

Project Jupyter [https://jupyter.org/] provides tools for users to do interactive computing using different programming languages on a unified web interface. It has many components intended for single-user or multi-user environments running on personal computers or shared resources like our HPC cluster. Depending on one’s needs, it is possible to deploy one or more of these components together.

Single-user Jupyter Notebooks

Jupyter Notebooks [https://jupyter-notebook.readthedocs.io/] are single-user web-based interactive notebooks. They allow users to create and share documents that contain live code, equations, visualizations and narrative text. Using Anaconda, anyone can install and run Jupyter Notebooks on their local computer. However, to be able to run Jupyter Notebooks on a remote shared resource like our HPC, one would need to log into the HPC cluster, use the commandline to reserve computing resources and set up some cumbersome SSH tunneling as described here. A more convenient way to run Jupyter Notebooks on a shared resource is using JupyterHub.

Multi-user environments using JupyterHub

JupyterHub [https://github.com/jupyterhub/jupyterhub] is the great way to serve single-user Jupyter Notebooks to a large number of users in a clean and secure way. It allows multiple authentication methods and integrates with our HPC’s batch scheduler to request computing resources and spawn Jupyter Notebook servers (jupyterhub-singleuser) on those computing resources when they become available.

JupyterHub+JupyterLab for a complete interactive web interface

JupyterLab [https://jupyterlab.readthedocs.io/] adds powerful plugins like the terminals, file browsers, built-in Markdown editor, ability to start and stop multiple kernels, and many other extensions to any JupyterHub installation. All these capabilities enable users to do all their interactive computation from the JupyterLab+JupyterHub interface.

See the video below to review some of these capabilities:

{% embed url=”https://youtu.be/A5YyoCKxEOU” %}

Typical Workflow

A typical workflow for a user on our JupyterHub installation would look like this:

	Use a browser to connect to our JupyterHub installation (https://hpc.cofc.edu/jupyterhub)

	Log in with your CofC HPC credentials

	Request a resource

	Local login node for tasks that are not computationally intensive

	your notebook server will be shut down after a period of inactivity

	Compute node for computationally intensive tasks

	your notebook server will be shut down when your allocated time runs out or when you explicitly stop your notebook server

	Open your notebook using the appropriate kernel

	Shared kernels - these kernels have most of the libraries you would need, but you can’t install new packages into the kernels if anything is missing

	User kernels - these are kernels you install in your user space ($HOME/.conda/env) and have full control over

	Run your notebook or perform any other tasks

	Shut down all kernels and the notebook server when you finish

Accessing our JupyterHub Installation

Our JupyterHub installation can be found at https://hpc.cofc.edu/jupyterhub. To access it,

	users need to have a CofC HPC account

	users need to

	be on our campus ‘wired’ or ‘eduroam’ wireless networks or

	use our CofC VPN if they are off-campus

{% hint style=”info” %}
Please note that users will need to be added to the CofC HPC VPN group to access the HPC and services it hosts like JupyterHub.
{% endhint %}

Requesting Resources

Once you log into our JupyterHub installation, you will see a Server Options page asking for the resources you need. Please note that there may be 5-10 second delay as the server confirms your credentials and starts up your environment. From the Select a job profile dropdown menu, please select the appropriate resource based on your needs.

[image: using-the-hpc/scheduling-jobs/../../.gitbook/assets/jl-requestresource%20%281%29.png]Requesting Resources

	Login-local (access to login node; no heavy computations allowed)

	If you simply want to look at data, transfer files or some non-intensive analysis, this is the best option for you. It allows you to perform these simple tasks on the login node.You should, however, not run anything computationally intensive because you are on a shared server with many other users. If you intend to run demanding computations, please request one of the other job profiles.

{% hint style=”warning” %}

	Do not run anything computationally intensive on the login node.

	By the same token, if you are not doing anything computationally intensive, do not waste resources by requesting compute modes.

	In short, request the right resource for your needs every time.
{% endhint %}

	Compute-8 cores, 32GB for 2 hrs -

	this requests 8 computing cores, 32GB memory for 2 hours in one of the compute nodes.

	If the resources you requested are available immediately, it will spawn a single-user Jupyter Notebook for you in the compute node

	If the resources you requested are not available immediately, the server will wait for as long as 120 seconds to see if anything becomes available. If it does not find the resources you requested, it will inform you to try making the request later.

	Compute-8 cores, 32GB for 4 hrs -

	Compute-16 cores, 64GB for 2 hrs -

	Compute-16 cores, 64GB for 4 hrs -

	…

	Compute-1 GPU, 24 cores, 180GB for 2 hrs -

	This one further requests one of our Nvidia Tesla V100 GPUs. We’ll add the capability to request our NVIDIA Quadro P4000 GPU is there is interest.

	Compute-1 GPU, 24 cores, 180GB for 4 hrs -

{% hint style=”info” %}
If the time (time limit) or resources (#CPUs, memory, GPUs) from the above profiles are not enough for your computing needs, please email hpc@cofc.edu for help and we’ll accommodate your request.
{% endhint %}

Once the requested resource is available, you will have a single-user Jupyter notebook server running on that resource.

Kernels

What makes Project Jupyter powerful is that it allows users to run notebooks written in many programming languages even though Python(iPython) is the original language of choice. We provide a set system-wide kernels all users can access, but not modify. Users can add their own kernels and make it visible to the Jupyter environment.

If you open a terminal on the designated resource, load the anaconda/3 module, activate the jupyter-hub environment, and enter jupyter kernelspec list, you will see the system-wide and user kernels available to you.

$user@hpc[~] module load anaconda/3
Currently Loaded Modules:
 1) autotools 2) prun/1.2 3) gnu8/8.3.0 4) openmpi3/3.1.3
 5) ohpc 6) use.own 7) anaconda/3/2020.02

$user@hpc[~] source activate jupyter-hub

$user@hpc[~] conda env list
conda environments:
#
base /opt/ohpc/pub/apps/anaconda/3/2020.02
arcgis /opt/ohpc/pub/apps/anaconda/3/2020.02/envs/arcgis
jupyter-hub >> * << /opt/ohpc/pub/apps/anaconda/3/2020.02/envs/jupyter-hub
psi4 /opt/ohpc/pub/apps/anaconda/3/2020.02/envs/psi4
tensorflow /opt/ohpc/pub/apps/anaconda/3/2020.02/envs/tensorflow

$user@hpc[~] jupyter kernelspec list
Available kernels:
 >>system-wide kernels stored at /opt/ohpc/pub<<
 arcgis /opt/ohpc/pub/apps/anaconda/3/2020.02/envs/jupyter-hub/share/jupyter/kernels/arcgis
 julia-1.4 /opt/ohpc/pub/apps/anaconda/3/2020.02/envs/jupyter-hub/share/jupyter/kernels/julia-1.4
 python3 /opt/ohpc/pub/apps/anaconda/3/2020.02/envs/jupyter-hub/share/jupyter/kernels/python3
 tensorflow /opt/ohpc/pub/apps/anaconda/3/2020.02/envs/jupyter-hub/share/jupyter/kernels/tensorflow

 >>user kernels stored at /home/user/.conda/<<
 jupyter_2.7 /home/user/.local/share/jupyter/kernels/jupyter_2.7
 psi4 /home/user/.local/share/jupyter/kernels/psi4

System-wide/Shared kernels

We currently provide systemwide kernels to run

	Python3.7 ,Python3.6, Python2.7

	
	including most commonly used libraries such as numpy, scipy, matplotlib, plotly, pandas, tensorflow, scikit-learn, seaborn, imblearn, numba, dask, rdkit, pybel, openbabel

	Tensorflow2.0 - including the most commonly used libraries listed above and with support for GPUs

	iR - kernel to run R/3.5.2

	iJulia - to run Julia code

	Matlab - to run matlab/r2019b

	Mathematica - to run mathematica/12.1

	currently, we only have license to run it on the login node

	GNUplot - to run GNUplot 3.5.2

	Psi4- to run Psi4 notebooks for computational chemistry

	ArcGIS - to run ArcGIS Python notebooks

These system-wide kernels are installed at /opt/ohpc/pub/apps/anaconda/3/2020.02/envs where users do not have permission to modify them. Therefore, in cases where these kernels are insufficient, users would need to

	email hpc@cofc.edu to ask for modifications of these kernels or installation of additional ones OR

	install an environment in their own user space and make it available to the Jupyter server

{% hint style=”info” %}
The names of the system-wide kernels has a “_’” prefix to distinguish them from kernels in your user space. Users are encouraged to give unique display names to their own kernels as well.
{% endhint %}

User kernels

To install a new user kernel, say to install Python 2.7 , you would need to

	open a terminal in the HPC cluster

	load the appropriate anaconda or miniconda module and activate the base environment if it isn’t already

	create a new environment

	install the packages (including ipykernel) you want inside that environment

	make that kernel visible to Jupyter

These steps are explained below.

Log into the HPC

You can access the HPC different ways, but the easiest way would be using the JupyterHub. Log into our JupyterHub installation and open a terminal from the ensuing dashboard.

Load anaconda module

You are encouraged to use the latest anaconda installation (which is the default), but slightly older versions should work as well.

$user@hpc[~] module list
Currently Loaded Modules:
 1) autotools 2) prun/1.2 3) gnu8/8.3.0 4) openmpi3/3.1.3
 5) ohpc 6) use.own

$user@hpc[~] module load anaconda/3
Currently Loaded Modules:
 1) autotools 2) prun/1.2 3) gnu8/8.3.0 4) openmpi3/3.1.3
 5) ohpc 6) use.own 7) anaconda/3/2020.02

$user@hpc[~] which conda
/opt/ohpc/pub/apps/anaconda/3/2020.02/bin/conda

Create a new environment

You would need to create a new environment for the new kernel in your user space. As you can see below, the default environment is the base containing base Python 3.7 and other useful tools like the pip and conda package managers.

$user@hpc[~] conda env list
conda environments:
#
myPython37 /home/user/.conda/envs/myPython37
base * /opt/ohpc/pub/apps/anaconda/3/2020.02
arcgis /opt/ohpc/pub/apps/anaconda/3/2020.02/envs/arcgis
jupyter-hub /opt/ohpc/pub/apps/anaconda/3/2020.02/envs/jupyter-hub
psi4 /opt/ohpc/pub/apps/anaconda/3/2020.02/envs/psi4
tensorflow /opt/ohpc/pub/apps/anaconda/3/2020.02/envs/tensorflow

{% hint style=”warning” %}
It is wise to append something (e.g. myPython37 instead of Python37) to distinguish system-wide kernels from those in your user space. If a kernel in your user space has the same name as a system-wide one, the one in your user space will have precedence. You can check the order in which jupyter looks for kernels by entering ‘jupyter --paths’ in the command line
{% endhint %}

Now, we’ll create a Python 2.7 environment

$user@hpc[~] conda create -n "myPython27" python=2.7
collecting package metadata (current_repodata.json): done
Solving environment: done

Package Plan

 environment location: /home/test-user/.conda/envs/myPython27

 added / updated specs:
 - pip
 - python=2.7

The following packages will be downloaded:

 package | build
 ---------------------------|-----------------
 certifi-2019.11.28 | py27_0 153 KB
 libffi-3.3 | he6710b0_1 50 KB
 ncurses-6.2 | he6710b0_1 817 KB
 pip-20.1 | pyh9f0ad1d_0 1.1 MB conda-forge
 python-2.7.18 | h15b4118_1 9.9 MB
 readline-8.0 | h7b6447c_0 356 KB
 setuptools-41.0.1 | py27_0 646 KB intel
 sqlite-3.31.1 | h62c20be_1 2.0 MB
 --
 Total: 14.9 MB

The following NEW packages will be INSTALLED:

 _libgcc_mutex pkgs/main/linux-64::_libgcc_mutex-0.1-main
 ca-certificates pkgs/main/linux-64::ca-certificates-2020.1.1-0
 certifi pkgs/main/linux-64::certifi-2019.11.28-py27_0
 libedit pkgs/main/linux-64::libedit-3.1.20181209-hc058e9b_0
 libffi pkgs/main/linux-64::libffi-3.3-he6710b0_1
 libgcc-ng pkgs/main/linux-64::libgcc-ng-9.1.0-hdf63c60_0
 libstdcxx-ng pkgs/main/linux-64::libstdcxx-ng-9.1.0-hdf63c60_0
 ncurses pkgs/main/linux-64::ncurses-6.2-he6710b0_1
 pip conda-forge/noarch::pip-20.1-pyh9f0ad1d_0
 python pkgs/main/linux-64::python-2.7.18-h15b4118_1
 readline pkgs/main/linux-64::readline-8.0-h7b6447c_0
 setuptools intel/linux-64::setuptools-41.0.1-py27_0
 sqlite pkgs/main/linux-64::sqlite-3.31.1-h62c20be_1
 tk pkgs/main/linux-64::tk-8.6.8-hbc83047_0
 wheel conda-forge/noarch::wheel-0.34.2-py_1
 zlib pkgs/main/linux-64::zlib-1.2.11-h7b6447c_3

Proceed ([y]/n)? y

Downloading and Extracting Packages
ncurses-6.2 | 817 KB | ## | 100%
readline-8.0 | 356 KB | ## | 100%
sqlite-3.31.1 | 2.0 MB | ## | 100%
certifi-2019.11.28 | 153 KB | ## | 100%
python-2.7.18 | 9.9 MB | ## | 100%
setuptools-41.0.1 | 646 KB | ## | 100%
libffi-3.3 | 50 KB | ## | 100%
pip-20.1 | 1.1 MB | ## | 100%
Preparing transaction: done
Verifying transaction: done
Executing transaction: done
#
To activate this environment, use
#
$ conda activate myPython27
#
To deactivate an active environment, use
#
$ conda deactivate

$user@hpc[~] conda env list
conda environments:
#
>>myPython27 /home/user/.conda/envs/myPython27 <<
myPython37 /home/user/.conda/envs/myPython37
base * /opt/ohpc/pub/apps/anaconda/3/2020.02
arcgis /opt/ohpc/pub/apps/anaconda/3/2020.02/envs/arcgis
jupyter-hub /opt/ohpc/pub/apps/anaconda/3/2020.02/envs/jupyter-hub
psi4 /opt/ohpc/pub/apps/anaconda/3/2020.02/envs/psi4
tensorflow /opt/ohpc/pub/apps/anaconda/3/2020.02/envs/tensorflow

$user@hpc[~] source activate myPython27

$user@hpc[~] conda env list
conda environments:
#
myPython27 >> * << /home/user/.conda/envs/myPython27
myPython37 /home/user/.conda/envs/myPython37
base /opt/ohpc/pub/apps/anaconda/3/2020.02
arcgis /opt/ohpc/pub/apps/anaconda/3/2020.02/envs/arcgis
jupyter-hub /opt/ohpc/pub/apps/anaconda/3/2020.02/envs/jupyter-hub
psi4 /opt/ohpc/pub/apps/anaconda/3/2020.02/envs/psi4
tensorflow /opt/ohpc/pub/apps/anaconda/3/2020.02/envs/tensorflow

And install the most commonly used packages for scientific and data analysis

$(myPython27)user@hpc[~] conda install numpy python=2.7
$(myPython27)user@hpc[~] conda install matplotlib python=2.7
$(myPython27)user@hpc[~] conda install pandas python=2.7
.
.
.
$(myPython27)user@hpc[~] conda install ipykernel python=2.7
...

{% hint style=”warning” %}
Do not forget to install iPykernel as you would need it to run your kernel in Jupyter Notebooks
{% endhint %}

Make that kernel visible to Jupyter

To be able to run your kernel in Jupyter Notebooks, you need to make it visible to our JupyterHub installation from the new environment.

$(myPython27)user@hpc[~] python -m ipykernel install --user --name "myPython27" --display-name "myPython27"
Installed kernelspec myPython27 in /home/user/.local/share/jupyter/kernels/mypython27

Verify that the kernel is installed and visible

You should deactivate the current environment, activate the jupyter-hub environment, and check to see if the kernel is installed and visible

$(myPython27)user@hpc[~] conda deactivate

$(base)user@hpc[~] conda env list
conda environments:
#
myPython27 /home/user/.conda/envs/myPython27
myPython37 /home/user/.conda/envs/myPython37
base >> * << /opt/ohpc/pub/apps/anaconda/3/2020.02
arcgis /opt/ohpc/pub/apps/anaconda/3/2020.02/envs/arcgis
jupyter-hub /opt/ohpc/pub/apps/anaconda/3/2020.02/envs/jupyter-hub
psi4 /opt/ohpc/pub/apps/anaconda/3/2020.02/envs/psi4
tensorflow /opt/ohpc/pub/apps/anaconda/3/2020.02/envs/tensorflow

$(myPython27)user@hpc[~] source activate jupyter-hub

$(jupyter-hub)user@hpc[~] conda env list
conda environments:
#
myPython27 /home/user/.conda/envs/myPython27
myPython37 /home/user/.conda/envs/myPython37
base /opt/ohpc/pub/apps/anaconda/3/2020.02
arcgis /opt/ohpc/pub/apps/anaconda/3/2020.02/envs/arcgis
jupyter-hub >> * << /opt/ohpc/pub/apps/anaconda/3/2020.02/envs/jupyter-hub
psi4 /opt/ohpc/pub/apps/anaconda/3/2020.02/envs/psi4
tensorflow /opt/ohpc/pub/apps/anaconda/3/2020.02/envs/tensorflow

$(jupyter-hub)user@hpc[~] jupyter kernelspec list
Available kernels:
>>mypython27 /home/user/.local/share/jupyter/kernels/mypython27 <<
 arcgis /opt/ohpc/pub/apps/anaconda/3/2020.02/envs/jupyter-hub/share/jupyter/kernels/arcgis
 julia-1.4 /opt/ohpc/pub/apps/anaconda/3/2020.02/envs/jupyter-hub/share/jupyter/kernels/julia-1.4
 psi4 /opt/ohpc/pub/apps/anaconda/3/2020.02/envs/jupyter-hub/share/jupyter/kernels/psi4
 python3 /opt/ohpc/pub/apps/anaconda/3/2020.02/envs/jupyter-hub/share/jupyter/kernels/python3
 tensorflow /opt/ohpc/pub/apps/anaconda/3/2020.02/envs/jupyter-hub/share/jupyter/kernels/tensorflow

You can further confirm the kernel’s availability on the JupyterHub’s web interface:

[image: ../../_images/newkernelinstalled.png]New Python 2.7 kernel installed in a user's space

Working with the JupyterLab Interface

As you can see above JupyterLab adds a lot of capabilities to our JupyterHub installation by providing terminals, text editors, data viewers, file upload/download, and a myriad of other extensions. In short, it removes a lot of the barriers non-expert users face when working in a terminal-based environment like our HPC.

A demonstration of a lot of its features is available here [https://jupyterlab.readthedocs.io/en/stable/user/interface.html].

The 6 minute video below covers some of the basic features.

{% embed url=”https://youtu.be/ctOM-Gza04Y?t=166” caption=”Demo of JupyterLab’s capabilities” %}

The Interface

The JupyterLab interface is fairly intuitive and you can learn more about it here [https://codingclubuc3m.rbind.io/post/2019-05-08/] among other places. We will highlight the most important parts below.

[image: ../../_images/jl-menubar.png]https://codingclubuc3m.rbind.io/post/2019-05-08_files/2.png

	Menu bar - contains File, Edit, View, Kernel, Tabs, Settings and Help with dropdown options under each.

	Left Sidebar

	allows file browsing,

	checking running kernels,

	shows other JupyterLab extensions

	Main Work Area

	displays notebooks, terminals, images, data files, … etc

	allows tiling of windows in any kind of configuration

The options in the left sidebar are labeled in the figure below.

[image: ../../_images/jl-labeled.png]

JupyterLab extensions

We provide a set of standard extension as well as a few others that are deemed useful to our user base. While individual users do not have permission to install extensions themselves, they can send requests to hpc@cofc.edu.

Exiting Cleanly

Since the HPC is a shared resource, every user has a responsibility to make sure that it is being used in a manner that benefits everyone optimally. One way of ensuring that is

	requesting the right amount of resource (CPUs, memory, GPUs) for the appropriate amount of time (2hrs, 4hrs, …)

	Properly shutting down running kernels and single-user JupyterHub server when you are finished

Information about requesting the right resource for the right task is described in the “Requesting Resources” section above.

Shut down running kernels

It is not unusual for you to have many terminals, notebooks, files … etc running on JupyterHub. When you finish, please click on ‘Running Terminals and Kernels’ button on the left sidebar and shut down the running kernel sessions.

[image: ../../_images/jl-shutdownallrunningkernels.png]

Shut down single-user server

Then, go to the File menu and select Hub Control Panel to see the single-user Jupyterhub servers running under your account. Then, stop the server and log out.

[image: ../../_images/jl_hub_control_panel.png]

[image: ../../_images/jl-stopserverandlogout.png]

F.A.Q.

How come I can’t connect to the JupyterHub interface?

If your attempt to connect to our JupyterHub installation is timing out, it is likely because you are being blocked by our campus firewall.

	If you are on campus, make sure you are connected to the wired or ‘eduroam’ wireless networks. You will need use a VPN if you are using the campus guest wireless network.

	If you are off campus, make sure you are using the CofC VPN.

How can one turn any Python script into a notebook?

Yes. There are many tools to convert regular Python scripts (*.py) to iPython notebooks (*.ipynb). These include

	p2j - install using pip install p2j or conda install p2j

	py2nb

	…

Alternatively, you can just open a blank Jupyter Notebook and copy/paste your Python script into the cell and save it as iPython notebook.

Can I run Python2 scripts/notebooks?

Yes, you can still use the ‘Python2.7-shared’ kernel to run Python2 scripts/notebooks. However, everyone is strongly encouraged to migrate to Python3 given the end of official support for Python2 in January 2020. You can convert Python2 script to Python3 using 2to3 - the automated Python 2 to 4 code translator. [https://docs.python.org/2/library/2to3.html]

What other kernels are available for Jupyter?

Scala, Matlab, Mathematica, Haskell, Spark, Javascript, …

You can find a more complete list at https://github.com/jupyter/jupyter/wiki/Jupyter-kernels

If there is a particular kernel you or your students want to share, please send that request to hpc@cofc.eduand we’ll make it available.

If the time or resources I request is not enough, can I request an extension or more resources?

Yes. The time limit (2-4 hours) in the current profiles is intended to prevent users from hogging compute nodes for unnecessarily long time. If you have a calculation that requires more time, please email hpc@cofc.edu and request for the time limit to be extended. If your calculations generally require more than 4 hours, please email hpc@cofc.edu and we will create a new profile with a longer time limit for you.

If the number of CPUs or RAM in the current profiles do not match your needs well, we can create new ones.

Can the JupyerHub installation be used for instruction in a classroom environment?

Yes. Faculty can request classroom accounts they can use on a recurring basis. Please note that off-campus access to the HPC as a whole and the JupyterHub installation in particular requires students to be added to the HPC VPN group. Please make those requests far in advance because they take time.

Are there sample example notebooks one can play around with?

Yes. For a trusted set of examples that have been tested on our JupyterHub installation, please check your $HOME/jupyter directory.

There is a large “gallery of interesting Jupyter Notebooks” from all sorts of fields here: https://github.com/jupyter/jupyter/wiki/A-gallery-of-interesting-Jupyter-Notebooks

There is a constantly growing collection of notebooks at https://nbviewer.jupyter.org/

Kaggle [https://www.kaggle.com/notebooks] also has lots of interesting notebooks to play around with.

Please note that some of the Notebooks are old (dating back to 2016) and they may not run on our installation. Some libraries, calls, attributed may have been deprecated or replaced. You are better off running more recent notebooks (2019 -).

{% hint style=”warning” %}
Please be cautious about randomly downloading and running a notebook from the web. You could compromise your account and the security of the cluster as a whole. Also, *do not* run these notebooks on the login node as their resource requirements could be substantial.
{% endhint %}

Are Google Colaboratory Notebooks capable of running on our JupyterHub installation?

Yes, Google Colab runs Jupyter Notebooks on Google Cloud Platform. So. their notebooks should be compatible with our JupyterHub installation.

 WebMO

WebMO

WebMO [https://www.webmo.net] is a web interface to many computational chemistry programs. It has many powerful capabilities that give users access to computational chemistry tools without having to use a command line.

Faculty and staff can get access to our WebMO Enterprise installation at https://hpc.cofc.edu/webmo by emailing a request to hpc@cofc.edu. Students need their faculty/research advisor to submit a request on their behalf.

Capabilities

Visualization

WebMO Enterprise [https://www.webmo.net/enterprise/index.html] has the following capabilities:

	Build molecules by drawing atoms and bonds in a 3-D molecular editor, or by speaking the name (e.g., “aspirin”)

	Optimize structures using VSEPR theory or molecular mechanics

	View Huckel molecular orbitals, electron density, and electrostatic potential

	View point group and symmetry elements of molecules

	Lookup basic molecular information, including IUPAC and common names, stoichiometry, molar mass

	Lookup chemical data from PubChem and ChemSpider

	Lookup experimental and predicted molecular properties from external databases (NIST, Sigma-Aldrich)

	Lookup IR, UV-VIS, NMR, and mass spectra from external databases (NIST, NMRShiftDB)

Interfaces to Common Packages

Our WebMO installation provides interfaces to the following packages:

	Gaussian,

	GAMESS,

	ORCA

	MOPAC

	PSI

	Molpro

	NWChem

	PQS

	Quantum Espresso

	VASP

	Q-Chem

	Tinker

Integration to Queue Manager

	Submit, monitor, and view calculations

	View formatted tabular data extracted from output files, as well as raw output

	Visualize geometry, partial charges, dipole moment, normal vibrational modes, molecular orbitals, and NMR/IR/UV-VIS spectra

Notes about using the CofC WebMO Installation

How to get access

We have a WebMO Enterprise installation at https://hpc.cofc.edu/webmo. To request an account, faculty and staff can

	email hpc@cofc.edu OR

	submit a service request [https://cofc.teamdynamix.com/TDClient/Requests/ServiceDet?ID=35085].

Students need their faculty/research advisor to submit a request on their behalf.

Best Way to Learn about WebMO

WebMO has a very user-friendly interface. The quickest way to learn about it is to go over these YouTube tutorials

	WebMO basics (7:30) [https://www.youtube.com/watch?v=X_JbEtytasE]

	Computational Chemistry using WebMO at UoA (26:12) [https://www.youtube.com/watch?v=iZqYmd10mgg]

Below are notes about using our WebMO installation safely and effectively.

Hardware

WebMO calculations are run on compute nodes with the following raw specs:

	10 stdmem nodes each with 2x 20-core 2.4GHz Intel Xeon Skylake CPUs, 192GB of RAM and 480GB of raw local storage,

	1 bigmem node with 4x 20-core 2.4GHz Intel Xeon Skylake CPUs, 1536GB of RAM and 960GB of raw local storage,

In short, these two compute node types provide the following resources

	10 stdmem nodes each with 40 cores, 192GB of RAM (4.8GB/core) and 300GB local scratch storage

	1 bigmem node with 80 cores, 1536GB of RAM (19.2GB/core) and 660GB of local scratch storage,

These specs should guide what resources you request to run your calculations.

Queues

There are two queues that you can submit your WebMO calculations to. Please choose the appropriate queue based on your needs. If you are unsure, the stdmemq should be able to meet most of your needs.

	stdmemq - Most calculations should be sent to queue. It has a 24-hour run limit. Anything submitted to this queue runs on the stdmem nodes.

	debugq - this queue is intended for short calculations running for 60 minutes or less. Anything submitted to this queue runs on the stdmem nodes.

	bigmemq - this queue is intended for calculations requiring lots of memory (4.8 - 19.2 GB/core) or local scratch storage.

	scavengeq - this queue will provide you the quickest access to the cluster’s resources because jobs in this queue are allowed to run on any type of node.

Queue	Time limit (hrs)	#CPU limit	Memory limit(GB)	Scratch disk limit (GB)	Best use
:—	:—	:—	:—	:—	:—
debugq	1	40	4.8/core	300	Quick test calculations lasting less than 1 hr
stdmemq	24	40	4.8/core	300	Most typical calculations
scavengeq	24	40	4.8-19/core	300-600	Most calculations; quicker turnaround time
bigmemq	24	40	19.2/core	600	Calculations needing lots of memory

Interfaces

Our WebMO installation provides interfaces to the following packages:

	Gaussian 16,

	GAMESS 18,

	ORCA 4.2.1

	MOPAC 2016

	PSI 4.1.5

In the future, we will provide interface to these following packages based on the level of interest and availability of the licenses for the packages.

	Molpro, NWChem, PQS, Quantum Espresso, VASP, Q-Chem, and Tinker

Please see the following tips to run your calculations optimally.

Gaussian

	See Gaussian’s support page [http://gaussian.com/techsupport] to learn about its capabilities.

	Please note that we do not have license for Linda to run calculations across multiple nodes. So, all your calculations would need to run within a single node.

	Depending the size of your molecule, the method and basis set you are using, and the type of calculation you are running, Gaussian’s parallel efficiency varies. In general, it scales well up to 16 compute cores. Therefore, you should use up to 16 cores even though the default number of compute cores is set to 8. In the ‘Preview’ tab before submitting your calculation, you can make sure the first line of your input file shows %NProcShared=16 or %NProcShared=8

	All our compute nodes have 4.8 GB/core, except for big memory node which has 19.2GB/core. Therefore, you should request about 4GB/core for your calculation. For example, you can add the line %MEM=32GB right below %NProcShared=8 and %MEM=64GB before %NProcShared=16. In short, If you are requesting N cores via %NProcShared=N, you should request %MEM=(N*4)GB.

	You should try to run MP2, MP4, CCSD, CCSD(T) calculations in integral direct mode as much as possible to prevent substantial slowdown that comes from writing lots of data to disk.

GAMESS

	See GAMESS’s site [https://www.msg.chem.iastate.edu/gamess/]

	GAMESS scales well within a node. We encourage you to use 8-16 cores in general, but you can request as many as 40 cores if necessary.

	GAMESS’s default memory is too low and that will cause most sizable calculations to fail due to lack of memory. Therefore, you would need to set the memory to a more reasonable number.

	In the Advanced tab, enter 500 or a larger number for the Memory field. That sets the memory per process to 500 megawords or 500 * 8 = 4GB.

ORCA

	See ORCA’s forum [https://orcaforum.kofo.mpg.de] to learn more and seek help

	A good summary of its capabilities is available at the ORCA Input Library [https://sites.google.com/site/orcainputlibrary/home]

	ORCA is a fantastic package with lots of capabilities. It scales very well within a node and has reasonable default settings. We encourage you to use 8-16 cores in general, but you can request as many as 40 cores if necessary.

MOPAC

	See MOPAC’s site [http://openmopac.net] to learn more about its capabilities

	MOPAC provides access to quick semi-empirical methods for calculations on molecules of any size quickly. By default, it will use 1 core and a limited amount of memory.

Caveats

	If your calculation needs more than 600GB of scratch storage, please contact hpc@cofc.edu about using the HPC’s global scratch storage.

 Examples @GitHub

Examples @GitHub

Example-runs

Sample runs and benchmarks

The sample calculations here are intended to guide you in setting up and running your own calculations. Each directory provides all the input files and batch submission files needed to run the particular calculations.

Prime number finder

This example demonstrates the power of

	parallelization using MPI

	picking the right algorithms

	GPUs

Python

A simple Python example

R

A simple R example

Matlab

A simple Matlab example

AMBER18 simulation

This calculation simulates a 136475-atom biological molecule for 100,000 time steps (200 picoseconds). It also demonstrates

	the power parallelization using MPI

	the power of GPUs

	different between consumer-grade (Nvidia Quadro P4000) and datacenter (NVIDIA Tesla V100) GPU

CM1 atmospheric simulation

CM1 is an atmospheric physics simulation package. Learn more at the developer’s site [http://www2.mmm.ucar.edu/people/bryan/cm1/].

In scientific terms: CM1 is a three-dimensional, non-hydrostatic, non-linear, time-dependent numerical model designed for idealized studies of atmospheric phenomena.

In non-scientific terms: CM1 is a computer program used for atmospheric research. It is designed for studies of relatively small-scale processes in the Earth’s atmosphere, such as thunderstorms.

The included tests run two examples called ‘squall_line’ and ‘supercell’ provided along with the CM1.

 description: >- Examples at https://github.com/hpc-cofc/example-runs/tree/master/chemistry/AMBER

description: >-
Examples at
https://github.com/hpc-cofc/example-runs/tree/master/chemistry/AMBER

AMBER

AMBER 18

Idea

This calculation simulates a 136475-atom biological molecule for 100,000 time steps (0.2 nanoseconds). It also reports how long of a simulation we can run in a day if we were to run it in

	one CPU-only node (one-node) with 40 cores = 40 MPI processes

	two CPU-only nodes (two-nodes) with 80 cores in total = 80 MPI processes

	one node with NVIDIA Quadro P4000 GPU (gpu-quadro-p4000) = 1 process on CPUs with massive processing on GPU

	one node with NVIDIA Tesla V100 GPU (gpu-tesla-v100) = 1 process on CPUs with massive processing on GPU

It demonstrates

	the power parallelization using MPI

	compare calculations on a single node (smp) vs. multiple nodes (mpi)

	the power of GPUs

	compare calculations on CPUs (smp, mpi) vs. GPUs (p4000, v100)

	different between consumer-grade and datacenter GPUs

	compare consumer-grade (NVidia Quadro P4000) and datacenter (NVIDIA Tesla V100) GPU

How to run

On the CofC HPC cluster, you can go into the one-node, two-nodes, gpu-quadro-p4000 and gpu-tesla-v100 directories and enter sbatch run.slurm

Results

Here is a summary from a sample run.

Calculation	Number of MPI processes	GPUs?	Speed of simulation (ns/day) [higher is better]
:—	:—	:—	:—
./single-node/40.out:	40	-	9.17
./two-nodes/80.out:	80	-	14.49
./gpu-quadro-p4000/quadro.out:	1	1	31.45
./gpu-tesla-v100/24.out:	1	1	116.84

 description: ‘Examples at https://github.com/hpc-cofc/example-runs/tree/master/physics/CM1’

description: ‘Examples at https://github.com/hpc-cofc/example-runs/tree/master/physics/CM1’

CM1

CM1 19.8-OMP

CM1 is an atmospheric physics simulation package. Learn more at the developer’s site [http://www2.mmm.ucar.edu/people/bryan/cm1/].

Compilation

This particular installation includes OpenMP parallelism within a compute node. It is compiled with our Intel compiler and library toolchain. It also leverages netCDF data formats.

How to run

The necessary modules are loaded automatically when you load the cm1 module.

The number of OpenMP threads should be set to equal the number of cores requested for the calculation.

module load cm1/19.8-omp
export OMP_NUM_THREADS=$SLURM_NTASKS
export MKL_NUM_THREADS=$SLURM_NTASKS

cm1.exe &> supercell.out

Results

This code scales very well within a compute node. So, one would ideally want to use as many cores as possible.

 description: ‘https://github.com/hpc-cofc/example-runs/tree/master/chemistry/GAMESS’

description: ‘https://github.com/hpc-cofc/example-runs/tree/master/chemistry/GAMESS’

GAMESS

See examples at https://github.com/hpc-cofc/example-runs/tree/master/chemistry/GAMESS

 description: ‘https://github.com/hpc-cofc/example-runs/tree/master/chemistry/Gaussian’

description: ‘https://github.com/hpc-cofc/example-runs/tree/master/chemistry/Gaussian’

Gaussian

See examples at https://github.com/hpc-cofc/example-runs/tree/master/chemistry/Gaussian

 description: >- See examples at https://github.com/hpc-cofc/example-runs/tree/master/01_prime-number-finder-on-CPUs-and-GPUs

description: >-
See examples at
https://github.com/hpc-cofc/example-runs/tree/master/01_prime-number-finder-on-CPUs-and-GPUs

GPUs (cuda)

Prime number finder

Idea

This calculation finds and counts the number of prime numbers below 500,000 using

	Sieve of Eratosthenes method implemented by Boris Bershadsky [https://github.com/bbershadsky/GPU610]

	and an MPI-parallelized brute-force method implemented by John Burkardt@FSU [https://people.sc.fsu.edu/~jburkardt/c_src/prime_mpi/prime_mpi.c]

Tests

In short, we run 1. Sieve of Eratosthenes - GPUs - CUDA Multithreading version 2. Sieve of Eratosthenes - CPUs - simple CPU version 3. Brute-force method - CPUs - MPI-parallelized version

How to run

You can use the test-queue.sh script to run the calculations on different queues/partitions on the CofC HPC cluster by ./test-queue.sh

Results

Here is a summary from a sample run.

Sieve of Eratosthenes - GPUs vs CPUs

See summary-gpuq.dat

Calculation	time (milliseconds) [lower is better]
:—	:—
GPU run	37
CPU run	278

Brute-force method - CPUs - MPI-parallelized version

See summary-stdmemq.dat

Number of Cores or MPI processes	Real time (seconds) [lower is better]	Parallel efficiency (higher is better)
:—	:—	:—
2	33	0.97
4	16	0.80
8	8	0.93
16	5	0.88

 description: >- Examples at https://github.com/hpc-cofc/example-runs/tree/master/07_Mathematica

description: >-
Examples at
https://github.com/hpc-cofc/example-runs/tree/master/07_Mathematica

Mathematica

Mathematica 12.0

Mathematica is a general symbolic and numerical simulation package that is known both for its powerful features and efficiency.

Here is a quick example of interactive serial and parallel calculations to print all Mersenne Prime numbers less than 5000. This example came from UChicago [https://rcc.uchicago.edu/docs/software/environments/mathematica/index.html]

[image: ../../../_images/250322.svg]asciicast [https://asciinema.org/a/250322?t=10]

While most people use Mathematica in interactive mode running on one CPU core, it does have capabilities to run on HPCs using a batch queue manager. We encourage users to do some testing on the login node and do their production runs by submitting them to compute nodes via the batch scheduler.

What versions of Mathematica are available?

You can always execute module spider matlab to see what versions of Matlab are available. In our case, you should see something like this:

user@localhost> module spider mathematica

--
 math/mathematica:
--
 Description:
 Application for computational chemistry and biochemistry

 Versions:
 math/mathematica/12.0

--
 For detailed information about a specific "math/matthematica" module (including how to load the modules) use the module's full name.
 For example:

 $ module spider math/mathematica/12.0
--

Operation Modes

Interactive mode on login node

Interactive mode on compute nodes

Batch mode on compute nodes

How to run

Results

 description: ‘See examples at https://github.com/hpc-cofc/example-runs/tree/master/06_Matlab’

description: ‘See examples at https://github.com/hpc-cofc/example-runs/tree/master/06_Matlab’

Matlab

Matlab 2019a/2018b/2018a/2017b

Matlab is a general numerical simulation package that is known both for its powerful features and efficiency.

While most people use Matlab in interactive mode running on one CPU core, it does have capabilities to run on HPCs using a batch queue manager. We encourage users to do some testing on the login node and do their production runs by submitting them to compute nodes via the batch scheduler.

What versions of Matlab are available?

You can always execute module spider matlab to see what versions of Matlab are available. In our case, you should see something like this:

user@localhost> module spider matlab

--
 math/matlab:
--
 Description:
 Application for computational chemistry and biochemistry

 Versions:
 math/matlab/r2017b
 math/matlab/r2018a
 math/matlab/r2018b
 math/matlab/r2019a

--
 For detailed information about a specific "math/matlab" module (including how to load the modules) use the module's full name.
 For example:

 $ module spider math/matlab/r2019a
--

Operation Modes

Interactive mode on login node

Interactive mode on compute nodes

Batch mode on compute nodes

How to run

There are very good instructions on adapting Matlab to run optimally on an HPC system here [https://github.com/UtrechtUniversity/MATLAB-on-HPC/blob/master/Part-3-Parallel-Matlab.]

 description: ‘https://github.com/hpc-cofc/example-runs/tree/master/chemistry/NAMD’

description: ‘https://github.com/hpc-cofc/example-runs/tree/master/chemistry/NAMD’

NAMD

See examples at https://github.com/hpc-cofc/example-runs/tree/master/12_NAMD/2.13 [https://github.com/hpc-cofc/example-runs/tree/master/chemistry/NAMD]

 description: >- See examples at https://github.com/hpc-cofc/example-runs/tree/master/chemistry/Orca

description: >-
See examples at
https://github.com/hpc-cofc/example-runs/tree/master/chemistry/Orca

Orca

Orca 4.1.2

Orca is a powerful computational chemistry package with capabilites to perform semiemipirical, density functional and ab initio methods as well as molecular dynamics simulations. Learn more at Orca’s website [https://orcaforum.kofo.mpg.de/app.php/portal]

Here is a quick example of an Orca run through a batch scheduler. This example calculates the MP2-F12/VTZ-F12 energy of water dimer.

[image: ../../../_images/250328.svg]asciicast [https://asciinema.org/a/250328]

What versions of Orca are available?

Operation Modes

Interactive mode on login node

Interactive mode on compute nodes

Batch mode on compute nodes

How to run

Results

 description: >- See examples at https://github.com/hpc-cofc/example-runs/tree/master/chemistry/Psi4

description: >-
See examples at
https://github.com/hpc-cofc/example-runs/tree/master/chemistry/Psi4

Psi4

Psi4Conda 1.3.1

Psi4 is a modular open-source suite of ab initio quantum chemistry programs designed for efficient, high-accuracy simulations of a variety of molecular properties. It is very easy to use and has an optional Python interface. Learn more at psicode.org [http://www.psicode.org]

Here is a quick example of SMP parallel Psi4 job that calculates the interaction energy of water dimer using the SAPT2+3(CCD) method.

There are other examples of Psi4Conda calculations at /opt/ohpc/pub/apps/chem/psi4conda/1.3.1/share/psi4/samples

[image: ../../../_images/250337.svg]asciicast [https://asciinema.org/a/250337?t=4]

What versions of Psi4 are available?

Currently, psi4conda/1.3.1 is available. Newer versions will be added as they become available.

Operation Modes

Interactive mode on login node

Interactive mode on compute nodes

Batch mode on compute nodes

How to run

Results

 MPI Example

MPI Example

The tutorial below shows you how to run Wes Kendall’s basic “hello world” program, written in C, using the message passing interface (MPI) to scale across our HPC compute nodes [1]. The test will be submitted to the HPC via a SLURM (Simple Linux Utility for Resource Management) [https://slurm.schedmd.com] batch scheduling system.

Additional examples can be found in C++, Fortran or Python sections.

Table of Contents

	Step 1: Access Your Allocation

	Step 2: Create a SLURM Script

	Example SLURM Script

	SLURM Script Breakdown

	SLURM Procedure

	Step 3: Compile the C Program from Source

	MPI Hello World Source Code

	C Procedure

	Step 4: Run the Job

Note: Do not execute jobs on the login nodes; only use the login nodes to access your compute nodes. Processor-intensive, memory-intensive, or otherwise disruptive processes running on login nodes will be killed without warning.

Step 1: Access Your Allocation

	Open a Bash terminal.

	Execute ssh username@hpc.cofc.edu.

	When prompted, enter your password.

Once you have connected to the login node, you can proceed to Step 2 and begin assembling your SLURM submission script.

Step 2: Create a SLURM Script

Below is the SLURM script we are using to run an MPI “hello world” program as a batch job. SLURM scripts use variables to specify things like the number of nodes and cores used to execute your job, estimated walltime for your job, and which compute resources to use (e.g., GPU vs. CPU). The sections below feature an example Slurm script for our HPC resources, show you how to create and save and submit your own SLURM script to run on our HPC.

Consult the official SLURM documentation [https://slurm.schedmd.com/documentation.html] and FAQ [https://slurm.schedmd.com/faq.html] for a complete list of options and common questions.

Example SLURM Script

Here is an example SLURM script for running a batch job on our HPC. Please save it to a file named mpi-test.slurm. We break down each command in the section below.

#!/bin/bash

#SBATCH -p stdmemq # Submit to 'stdmemq' Partitiion or queue
#SBATCH -J MPItest # Name the job as 'MPItest'
#SBATCH -o MPItest-%j.out # Write the standard output to file named 'jMPItest-<job_number>.out'
#SBATCH -e MPItest-%j.err # Write the standard error to file named 'jMPItest-<job_number>.err'
#SBATCH -t 0-12:00:00 # Run for a maximum time of 0 days, 12 hours, 00 mins, 00 secs
#SBATCH --nodes=1 # Request N nodes
#SBATCH --ntasks-per-node=20 # Request n cores or task per node
#SBATCH --mem-per-cpu=4GB # Request 4GB RAM per core
#SBATCH --mail-type=ALL # Send email notification at the start and end of the job
#SBATCH --mail-user=<user>@cofc.edu # Send email notification to this address

module list # will list modules loaded by default. In our case, it will be GNU8 compilers and OpenMPI3 MPI libraries
module swap openmpi3 mpich # swap the MPI library from the default 'openmpi3' to 'mpich'.
module list # will list modules loaded; we'll just use this to check that the modules we selected are indeed loaded
pwd # prints current working directory
date # prints the date and time

mpirun hello_world_c # run the MPI job

SLURM Script Breakdown

You can always type man sbatch to see all the SLURM batch submission options. Below is an explanation of the options used above.

-	Option	Description
:—	:—	:—
SBATCH	-p, --partition=<partition>	Submit the job to <partition> queue
SBATCH	-J, --job-name=<jobname>	Name the job as <jobname>
SBATCH	-o, --output=<filename>	Write the job’s standard output to the file name named <filename>
SBATCH	-e, --error=<filename>	Write the job’s standard error messages to the file name named <filename>
SBATCH	--mail-user=<e-mail_address>	Notify user by email when certain event types occur, as specified by the --mail-type=<type> option.
SBATCH	--mail-type=<type>	Notify user by email when certain event types occur. <type>=ALL notifies upon the start, end or failing of the job. <type>=END only notified the user at the end.
SBATCH	-N, --nodes=<n>	Request that n nodes be allocated to this job.
SBATCH	--ntasks-per-node=<ntasks>	Request that ntasks be started on each node.
SBATCH	--mem=<size[units]>	Specify the real memory required per node in the proper unit.
SBATCH	--mem-per-cpu=<size[units]>	Specify memory per core. 4GB is a reasonable number.
SBATCH	-t, --time=<time>	Maximum run time for your job in the format D-HH:MM:SS

Step 3: Compile the C Program from Source

Below is Wes Kendall’s simple “hello world” C program that utilizes MPI to run the job in parallel [1]. We will need to compile this source code on one of the compute nodes.

MPI Hello World Source Code

#include <mpi.h>
#include <stdio.h>

int main(int argc, char** argv) {
 // Initialize the MPI environment.
 MPI_Init(NULL, NULL);
 // Get the number of processes.
 int world_size;
 MPI_Comm_size(MPI_COMM_WORLD, &world_size);
 // Get the rank of the process.
 int world_rank;
 MPI_Comm_rank(MPI_COMM_WORLD, &world_rank);
 // Get the name of the processor.
 char processor_name[MPI_MAX_PROCESSOR_NAME];
 int name_len;
 MPI_Get_processor_name(processor_name, &name_len);
 // Print off a hello world message.
 printf("Hello world from processor %s, rank %d"
 " out of %d processors\n",
 processor_name, world_rank, world_size);
 // Finalize the MPI environment.
 MPI_Finalize();
}

C Procedure

When creating and editing your hello_world.c source code, we will be working on the login node using the text editor such as Vi, Emacs or Nano.

	Create a file named hello_world.c and paste the contents of the above code there.

	Load the compiler and MPI library. Enter module list to see if what modules are loaded. If MPICH is not loaded, swap the current MPI library with MPICH to proceed.

$user@host[~] module list

Currently Loaded Modules:
 1) autotools 2) prun/1.2 3) gnu8/8.3.0 4) openmpi3/3.1.3 5) ohpc

Please note that GNU8 and OpenMPI3 are the defaults on our cluster. This exercise suggests that we use a different flavor of MPI called MPICH [https://www.mpich.org/]. So, search for the available MPICH module.

$user@host[~] module spider mpich

--
mpich:
--
Description:
 MPICH MPI implementation

 Versions:
 mpich/3.2.1
 mpich/3.3
 --
 For detailed information about a specific "mpich" module (including how to load the modules) use the full name.
 For example:

 $ module spider mpich/3.3
 --

Try loading the suggested MPICH module, namely mpich/3.3

$user@host[~] module load mpich/3.3

Lmod has detected the following error: You can only have one MPI module loaded at a time.
You already have openmpi3 loaded.
To correct the situation, please execute the following command:

$user@host[~] module swap openmpi3 mpich/3.3

While processing the following module(s):
Module fullname Module Filename
 --------------- ---------------
 mpich/3.3 /opt/ohpc/pub/moduledeps/gnu8/mpich/3.3

As noted above, you can only have one MPI library in your path at a time. Therefore, you would need to swap the default openmpi3 library with mpich

$user@host[~] module swap openmpi3 mpich/3.3

	Compile the C source into a binary executable file.

$user@host[~] mpicc -o hello_world_c hello_world.c

	Use ls -al to verify the presence of the hello_world_c binary in your working directory.

With the C code compiled into a binary (hello_world_c), we can now schedule and run the job on our compute nodes.

Step 4: Run the Job

	Before proceeding, please check the path/directory as your SLURM script and C binary. Use ls -al to confirm their presence.

	Use sbatch to schedule your batch job in the queue.

$user@host[~] sbatch mpi-test.slurm

This command will automatically queue your job using SLURM and produce a job number (shown below). You can check the status of your job at any time with the squeue command.

$user@host[~] squeue -u $USER

You can also stop your job at any time with the scancel command.

$user@host[~] scancel <job_ID>

	View your results.Once your job completes, SLURM will produce two output/data files. These output/data files, unless otherwise specified in the SLURM script, are placed in the same path as your binary.One file (MPItest-<jobnumber>.out) contains the results of the binary you just executed, and the other (MPItest-<jobnumber>.err) contains any errors that occurred during execution. Please replace “ with your job number.You can view the contents of these files using the more command followed by the file name.

$user@host[~] more mpi_hello_world_c.oXXXXX

Your output should look something like this, with one line per processor core (20 in this case):

 Hello world from processor compute001, rank 3 out of 20 processors
 Hello world from processor compute002, rank 12 out of 20 processors
 Hello world from processor compute002, rank 14 out of 20 processors
 Hello world from processor compute001, rank 8 out of 20 processors
 .
 .
 .

	You have successfully created an MPI code and run it through a batch queue manager!

Works Cited

	Wes Kendall, “MPI Hello World,” MPI Tutorial, accessed June 14, 2017, http://mpitutorial.com/tutorials/mpi-hello-world/.

Additional Examples

	Working with C++

	Working with Fortran

	Working with Python

	Working with Makefiles

 C++

C++

The tutorial assumes you have already worked through the MPI Example Tutorial. Therefore, the instructions here are abbreviated but will follow the same format so you may easily consult the extended tutorial.

Table of Contents

	Step 1: Access Your Allocation

	Step 2: Create a SLURM Script

	Example SLURM Script

	SLURM Procedure

	Step 3: Compile the C++ Program from Source

	MPI Hello World Source Code

	C++ Procedure

	Step 4: Run the Job

Note: Do not execute jobs on the login nodes; only use the login nodes to access your compute nodes. Processor-intensive, memory-intensive, or otherwise disruptive processes running on login nodes will be killed without warning.

Step 1: Access Your Allocation

If you need to request an allocation, see instructions here.

	Open a Bash terminal (or PuTTY for Windows users).

	Execute ssh username@hpc.cofc.edu.

	When prompted, enter your or password.

Step 2: Create a SLURM Script

Example SLURM Script

Here is an example SLURM script for running a batch job on the cluster.

#!/bin/bash

#SBATCH -p stdmemq # Submit to 'stdmemq' Partitiion or queue
#SBATCH -J MPItest # Name the job as 'MPItest'
#SBATCH -o MPItest-%j.out # Write the standard output to file named 'jMPItest-<job_number>.out'
#SBATCH -e MPItest-%j.err # Write the standard error to file named 'jMPItest-<job_number>.err'
#SBATCH -t 0-12:00:00 # Run for a maximum time of 0 days, 12 hours, 00 mins, 00 secs
#SBATCH --nodes=1 # Request N nodes
#SBATCH --ntasks-per-node=20 # Request n cores or task per node
#SBATCH --mem-per-cpu=4000 # Request 4000MB (4GB) RAM per core
#SBATCH --mail-type=ALL # Send email notification at the start and end of the job
#SBATCH --mail-user=<user>@cofc.edu # Send email notification to this address

module list # will list modules loaded by default.
pwd # prints current working directory
date # prints the date and time

mpirun hello_world_cpp # run the MPI job

Step 3: Compile the C++ Program from Source

MPI Hello World Source Code

#include<iostream>
#include "mpi.h"

using namespace std;
#include "mpi.h"

int main(int argc, char *argv[])
{
 int id, p, name_len;
 char processor_name[MPI_MAX_PROCESSOR_NAME];
 MPI::Init(argc, argv);
 p = MPI::COMM_WORLD.Get_size();
 id = MPI::COMM_WORLD.Get_rank();
 MPI_Get_processor_name(processor_name, &name_len);
 cout<<" Processor " << processor_name<<" ID="<<id<< " Hello world\n";
 MPI::Finalize();
return 0;
}

C++ Procedure

	Compile the C++ source into a binary executable file.

$user@host[~] mpic++ -o hello_world_cpp hello_world.cpp

	Use ls -al to verify the presence of the hello_world_cpp binary in your working directory.

Step 4: Run the Job

	Use sbatch to schedule your batch job in the queue.

$user@host[~] sbatch hello_world_cpp.slurm

This command will automatically queue your job using SLURM and produce a job ID number (shown below). You can check the status of your job at any time with the squeue -j <JOB_ID> command.

$user@host[~] squeue -j 12345

You can also stop your job at any time with the scancel command.

$user@host[~] scancel 12345

	View your results. You can view the contents of these files using the more command followed by the file name.

 $user@host[~] more mpi_hello_world_cpp.o12345

Your output should look something like this (_the output is truncated._):

 Processor compute001 ID=5 Hello world
 Processor compute001 ID=1 Hello world
 Processor compute001 ID=4 Hello world
 Processor compute001 ID=8 Hello world
 .
 .
 .

	Download your results (using the scp command or an SFTP client) or move them to persistent storage.

Additional Examples

	Working with C

	Working with Fortran

	Working with Python

	Working with Makefiles

 Fortran

Fortran

The tutorial assumes you have already worked through the MPI Example Tutorial. Therefore, the instructions here are abbreviated but will follow the same format so you may easily consult the extended tutorial.

Table of Contents

	Step 1: Access Your Allocation

	Step 2: Create a SLURM Script

	Example SLURM Script

	SLURM Procedure

	Step 3: Compile the Fortran Program from Source

	MPI Hello World Source Code

	Fortran Procedure

	Step 4: Run the Job

Note: Do not execute jobs on the login nodes; only use the login nodes to access your compute nodes. Processor-intensive, memory-intensive, or otherwise disruptive processes running on login nodes will be killed without warning.

Step 1: Access Your Allocation

If you need to request an allocation, see instructions here.

	Open a Bash terminal (or PuTTY for Windows users).

	Execute ssh username@hpc.cofc.edu.

	When prompted, enter your password.

Step 2: Create a SLURM Script

Example SLURM Script

Here is an example SLURM script for running a batch job on the cluster.

#!/bin/bash

#SBATCH -p stdmemq # Submit to 'stdmemq' Partitiion or queue
#SBATCH -J MPItest # Name the job as 'MPItest'
#SBATCH -o MPItest-%j.out # Write the standard output to file named 'jMPItest-<job_number>.out'
#SBATCH -e MPItest-%j.err # Write the standard error to file named 'jMPItest-<job_number>.err'
#SBATCH -t 0-12:00:00 # Run for a maximum time of 0 days, 12 hours, 00 mins, 00 secs
#SBATCH --nodes=1 # Request N nodes
#SBATCH --ntasks-per-node=20 # Request n cores or task per node
#SBATCH --mem-per-cpu=4000 # Request 4000MB (4GB) RAM per core
#SBATCH --mail-type=ALL # Send email notification at the start and end of the job
#SBATCH --mail-user=<user>@cofc.edu # Send email notification to this address

module list # will list modules loaded by default. In our case, it will be GNU8 compilers and OpenMPI3 MPI libraries
module swap openmpi3 mpich # swap the MPI library from the default 'openmpi3' to 'mpich'.
module list # will list modules loaded; we'll just use this to check that the modules we selected are indeed loaded
pwd # prints current working directory
date # prints the date and time

mpirun hello_world_f

Step 3: Compile the Fortran Program from Source

MPI Hello World Source Code

program helloworld
use mpi
integer ierr, numprocs, procid

call MPI_INIT(ierr)

call MPI_COMM_RANK(MPI_COMM_WORLD, procid, ierr)
call MPI_COMM_SIZE(MPI_COMM_WORLD, numprocs, ierr)

print *, "Hello world! I am process ", procid, "out of", numprocs, "!"

call MPI_FINALIZE(ierr)

stop
end

Fortran Procedure

	Compile the Fortran source into a binary executable file.

$user@host[~] mpifort -o hello_world_f hello_world.f90

	Use ls -al to verify the presence of the hello_world_f binary in your working directory.

Step 4: Run the Job

	Use sbatch to schedule your batch job in the queue.

$user@host[~] sbatch hello_world_fortran.slurm

This command will automatically queue your job using SLURM and produce a job ID number (shown below). You can check the status of your job at any time with the squeue -j <JOB_ID> command.

$user@host[~] squeue -j 12345

You can also stop your job at any time with the scancel command.

$user@host[~] scancel 12345

	View your results.

You can view the contents of these files using the more command followed by the file name.

$user@host[~] more mpi_hello_world_f.o12345

Your output should look something like this (_the output is truncated._):

 Hello world! I am process 3 out of 20 !
 Hello world! I am process 0 out of 20 !
 Hello world! I am process 1 out of 20 !
 Hello world! I am process 7 out of 20 !
 Hello world! I am process 8 out of 20 !
 Hello world! I am process 2 out of 20 !
 Hello world! I am process 6 out of 20 !
 Hello world! I am process 11 out of 20 !
 .
 .
 .

	Download your results (using the scp command or an SFTP client) or move them to persistent storage.

Additional Examples

	Working with C

	Working with C++

	Working with Python

	Working with Makefiles

 Makefiles

Makefiles

The tutorial assumes you have already worked through the MPI Example Tutorial. Therefore, the instructions here are abbreviated but will follow the same format so you may easily consult the extended tutorial.

On this page, we will use a Makefile to automate the compiling of the C, C++, and Fortran programs. In our SLURM script, we will send a command to the Makefile which will compile codes prior to submitting the job to MPI.

Table of Contents

	Step 1: Access Your Allocation

	Step 2: Create a SLURM Script

	Example SLURM Script

	SLURM Procedure

	Step 3: Create the Makefile

	Makefile Code

	Makefile Procedure

	Step 4: Run the Job

Note: Do not execute jobs on the login nodes; only use the login nodes to access your compute nodes. Processor-intensive, memory-intensive, or otherwise disruptive processes running on login nodes will be killed without warning.

Step 1: Access Your Allocation

If you need to request an allocation, see instructions here.

	Open a Bash terminal (or PuTTY for Windows users).

	Execute ssh username@hpc.cofc.edu.

	When prompted, enter your password.

Step 2: Create a SLURM Script

Example SLURM Script

Here is an example SLURM script for running a batch job on our HPC.

#!/bin/bash

#SBATCH -p stdmemq # Submit to 'stdmemq' Partitiion or queue
#SBATCH -J MPItest # Name the job as 'MPItest'
#SBATCH -o MPItest-%j.out # Write the standard output to file named 'jMPItest-<job_number>.out'
#SBATCH -e MPItest-%j.err # Write the standard error to file named 'jMPItest-<job_number>.err'
#SBATCH -t 0-12:00:00 # Run for a maximum time of 0 days, 12 hours, 00 mins, 00 secs
#SBATCH --nodes=1 # Request N nodes
#SBATCH --ntasks-per-node=20 # Request n cores or task per node
#SBATCH --mem-per-cpu=4000 # Request 4000MB (4GB) RAM per core
#SBATCH --mail-type=ALL # Send email notification at the start and end of the job
#SBATCH --mail-user=<user>@cofc.edu # Send email notification to this address

module list # will list modules loaded by default. In our case, it will be GNU8 compilers and OpenMPI3 MPI libraries
pwd # prints current working directory
date # prints the date and time

make all

echo "=================================="
echo "Output of the MPI and C program"
echo "=================================="

mpirun hello_world_c

echo "=================================="
echo "Output of the MPI and C++ program"
echo "==================================="

mpirun hello_world_cpp

echo "====================================="
echo "Output of the MPI and Fortran program"
echo "====================================="

mpirun hello_world_f

echo "====================================="
echo "Output of the MPI and Python program"
echo "====================================="

mpirun python hello_world.py

echo "============================="
echo "Successful!!!... End of File"
echo "============================="

Step 3: Create the Makefile

A makefile contains instructions for Make software to automate the build of programs and source codes.

Makefile Code

This file must be located in the same path as the other source programs.

CC = mpicc
CXX = mpic++
FC = mpifort

OPTFLAGS = -O3
CFLAGS = $(OPTFLAGS) -g
CXXFLAGS = $(OPTFLAGS) -g
FFLAGS = $(OPTFLAGS) -g

all:hello_world_c hello_world_cpp hello_world_f

hello_world_c: hello_world.c
 $(CC) $(CFLAGS) -o hello_world_c hello_world.c

hello_world_cpp: hello_world.cpp
 $(CXX) $(CXXFLAGS) -o hello_world_cpp hello_world.cpp

hello_world_f: hello_world.f90
 $(FC) $(FFLAGS) -o hello_world_f hello_world.f90

clean:
 rm hello_world_*

Note: Indentations in a Makefile must be a Tab and not spaces.

Step 4: Run the Job

	Use sbatch to schedule your batch job in the queue.

$user@host[~] sbatch hello_world_make.slurm

This command will automatically queue your job using SLURM and produce a job ID number (shown below). You can check the status of your job at any time with the squeue -j <JOB_ID> command.

$user@host[~] squeue -j 12345

You can also stop your job at any time with the scancel command.

$user@host[~] scancel 12345

	View your results.

You can view the contents of these files using the more command followed by the file name.

 $user@host[~] more mpi_hello_world_make.o143295

Your output should look something like this (_the output is truncated._):

 Processor compute001 ID=9 Hello world
 Processor compute001 ID=4 Hello world
 Processor compute001 ID=0 Hello world
 Processor compute001 ID=1 Hello world
 Processor compute001 ID=3 Hello world
 Processor compute001 ID=5 Hello world
 .
 .
 .

	Download your results (using the scp command or an SFTP client) or move them to persistent storage.

Additional Examples

	Working with C

	Working with C++

	Working with Fortran

	Working with Python

 Python

Python

The tutorial assumes you have already worked through the MPI Example Tutorial. Therefore, the instructions here are abbreviated but will follow the same format so you may easily consult the extended tutorial.

Table of Contents

	Step 1: Access Your Allocation

	Step 2: Create a SLURM Script

	Example SLURM Script

	SLURM Procedure

	Step 3: Create a Python Program

	MPI Hello World Code

	Python Procedure

	Step 4: Run the Job

📝 Note: Do not execute jobs on the login nodes; only use the login nodes to access your compute nodes. Processor-intensive, memory-intensive, or otherwise disruptive processes running on login nodes will be killed without warning.

Step 1: Access Your Allocation

If you need to request an allocation, see instructions here.

	Open a Bash terminal (or PuTTY for Windows users).

	Execute ssh username@hpc.cofc.edu.

	When prompted, enter your or password.

Step 2: Create a SLURM Script

Example SLURM Script

Here is an example SLURM script for running a batch job on our HPC cluster.

#!/bin/bash

#SBATCH -p stdmemq # Submit to 'stdmemq' Partitiion or queue
#SBATCH -J MPItest # Name the job as 'MPItest'
#SBATCH -o MPItest-%j.out # Write the standard output to file named 'jMPItest-<job_number>.out'
#SBATCH -e MPItest-%j.err # Write the standard error to file named 'jMPItest-<job_number>.err'
#SBATCH -t 0-12:00:00 # Run for a maximum time of 0 days, 12 hours, 00 mins, 00 secs
#SBATCH --nodes=1 # Request N nodes
#SBATCH --ntasks-per-node=20 # Request n cores or task per node
#SBATCH --mem-per-cpu=4000 # Request 4000MB (4GB) RAM per core
#SBATCH --mail-type=ALL # Send email notification at the start and end of the job
#SBATCH --mail-user=<user>@cofc.edu # Send email notification to this address

module list # will list modules loaded by default. In our case, it will be GNU8 compilers and OpenMPI3 MPI libraries
pwd # prints current working directory
date # prints the date and time

mpirun python hello_world.py

	Create your SLURM script within Vi or paste the contents of your SLURM script into Vi.

	Save your file and return to the Bash shell.

Step 3: Create a Python Program

MPI Hello World Code

#!/usr/bin/env python

import sys
from mpi4py import MPI

size = MPI.COMM_WORLD.Get_size()
rank = MPI.COMM_WORLD.Get_rank()
name = MPI.Get_processor_name()

print("Hello, World! I am process ",rank," of ",size," on ",name)

Python Procedure

Since Python is an interpreted rather than compiled language, you do not need to compile your code.

Python does not need to be compiled.

Step 4: Run the Job

	Use sbatch to schedule your batch job in the queue.

$user@host[~] sbatch hello_world_cpp.slurm

This command will automatically queue your job using SLURM and produce a job ID number (shown below). You can check the status of your job at any time with the squeue -j <JOB_ID> command.

 $user@host[~]squeue -j 12345

You can also stop your job at any time with the scancel command.

$user@host[~] scancel 12345

	View your results. You can view the contents of these files using the more command followed by the file name.

 $user@host[~] more mpi_hello_world_py.o12345

Your output should look something like this (_the output is truncated._):

 Hello, World! I am process 11 of 20 on compute001
 Hello, World! I am process 13 of 20 on compute001
 Hello, World! I am process 12 of 20 on compute001
 Hello, World! I am process 0 of 20 on compute001
 Hello, World! I am process 15 of 20 on compute001
 .
 .
 .

	Download your results (using the scp command or an SFTP client) or move them to persistent storage.

Additional Examples

	Working with C

	Working with C++

	Working with Fortran

	Working with Makefiles

_images/250343.png
openhpc[~]

_images/crystal-workflow-mermaid.png
P1

P2

P4

P3

P5

P6

_images/fastx-4.png
oe CofC's HPC FastX3 test (hpc.cofc.edu)

Global Bookmarks.
My Bookmark

Clicking on the ‘+"idon gives the
option to start an XFCE desktop
environment or terminal

Command® startxfced. [t

Window Mode | Single 1024x768

- Concel | (CIH -

_images/fastx-5.png
CofC's HPC FastX3 test (hpc.cofc.edu)

E)
g =
privatemodul
B

li
a
es

= ™
mathema

a [l Documents

A

examples

_images/fastx-1.png
@ FastX File Session Window Help

_images/fastx-2.png
® @ Edit (CofC's HPC)

Name® CofC's HPC FastX3 test
Host* |hpc.cofc.edu
port* 22

User

replace with your user name
Path fastx-protocol

Forward Agent Connections

Reset

_images/fastx-6.png
w Applicatio Terminal - te

— Terminal - test-user@openhp
privatemodul File Edit View Terminal Tabs Help

test-user@openhpc[~] |

- -
| @

) e
xamples

-
"

nda
T | EpE)
examples

_images/fastx-7.png
w Applications | [B Terminal - test-user@o... & Test User
Lock Screen
Sl == @ Switch User
- Terminal - test-userG o suspend
a ut Down

test-user@openhpc[~] []

privatemodul File Edit View Terminal Tabs Help

N E

) e
xamples

_images/git-atom-switch-branch.png
¥ | master v New Branch =~

master

JTF-8 Dofiles @ 1update

nav.xhtml

 Table of Contents

 		
 Welcome to Read the Docs

_images/git-new_branch_atom.png
pomeser 4 NewBmnon
® LF UTF-8 2 Spaces GilHubMarkdown# 4+ [D8files

_images/git-show-branches.png
D ® o

o
=

4 0 60 =

Projects v Groups More v

Enable in settings

master user-documentation / =+ v

Switch branch/tag

Search branches and tags

Branches
wendi-5

v master
wendi-4
wendi-1
clc-edits

GettingStartedWork

O

s lc

am

_images/git-checkout-checkout-search.png
git checkout check]

Git Checkout: Checkout

_images/git-checkout-provide-branch.png

_images/hpc-schematic.png
Login Node Compute Nodes

!

batch job
—>
ssh l

queue

Global Global
Long-term Scratch

Storage Storage

_images/hw.png
cades@tl:~$ sudo docker run hello-world

Hello from Docker!
This message shows that your installation appears to be working correctly

To generate this message, Docker took the following steps:

1. The Docker client contacted the Docker daemon.

2. The Docker daemon pulled the "hello-world” image from the Docker Hub

3. The Docker daemon created a new container from that image which runs the
executable that produces the output you are currently reading.

4. The Docker daemon streamed that output to the Docker client, which sent it
to your terminal.

To try something more ambitious, you can run an Ubuntu container with:
$ docker run -it ubuntu bash

hare images, automate workflows, and more with a free Docker ID:
https://cloud.docker.com/

For more examples and ideas, visit:
https://docs.docker . con/engine/userguide/

cades@tl:~5 [|

_images/git-workflow-steps.png
Git Workflow

_images/hpc-cluster-schematic.png
Login Node Compute Nodes

Global Global
Long-term Scratch

On-campus — direct Storage Storage

Off-campus — using VPN

_images/jl-labeled.png
New Launcher

/7

\Table of Contents

New Folder
Upload Files
Refresh
T File [edit View [Run Kerfel Tabs fettings
]
/iupyter /
o Nay - Last Modified
CordnaVirus2019.ipynb 6 days ago
File Browser
5]
Running terminals and kernels
%
Commands
{ia]
\ Property Inspector
Open Tabs

Extensions Manager

Help

2 Launcher

Jupyter

E Notebook

e a

e

e

Python3.7- ArcOIS-shared Julla-shared myPsia myPython2.?
shared
Console
Python3.7- ArcOIS-shared Julla-shared myPsia myPython2.?
shared
= v a
Terminal Toxt File Markdown File Show

Contextual Help

_images/jl-menubar.png
Menu Bar

(CFie_EdT_View Run_Kernel _Tabs _Settings _Help. J
- T C) | (& coner T T s = T Totin e st
> o> jupyterlab-demo-master > notebooks | B + XD O » = C Code v Python3 O
& Name - Last Modifiec oy -x) =
B audio 8 months age m’* -
i+ ay
@ Dimoes 21hours ag ’
® copipymb 21hours a9 Lets change (o, .) with ipywidgets and xamine the rjecories
Dataipy 21hours
Q[oy o from 1oren ssport sotve Lorers
(B Fastaipynb 21 hours age w=interactive(solve_lorenz, signa=(8.9,50.9),rho=(2.0,50.0))
5 siaiot 8 months a5 “
sma 1000
 Ripynb adayag . o
@ torenzoy 8 monthe 2
o 2000

ea)

x

Main Awr

Delimter v

Left Sidebar

sepal_longisepal_wilpetal engi petal_wilspecies

A TR TR
PSP (VR YR O
s e
3 Moseums . oCgeason [ER. TR
e S e oy
- 54 39 17 04 setosa
6 s e a5 seom
/ ! Y S oy
ooy ! 3 I VR T S (VR TR 0%
TR SR TR TR
el W se a7 15 02 e
i 2 s se 15 o2 e
Idyhwodd ¥ 3,
oppodf 2 | R T S PR TR
A e T e s or e
n O » B4 iz o2 s
: S Ny 7y [A PR PR PR)
e 3 Baley's Crofsoads 7 ”V;‘mmm et i se a9 B3 04 sees
TR s . o 8 51 35 14 03 setosa

_images/jl-shutdownallrunningkernels.png
Edit View Run

O

KERNEL SESSIONS

[Psi4-testipynb
[CoronaVirus2019.ipyr

TERMINAL SESSIONS

S 0o nr

&

Kernel | Tabs Settings Help

Interrupt Kernel

Restart Kernel.
Restart Kernel and Clear.
Restart Kernel and Run up to Selected Cell

Restart Kernel and Run Al

Shut Down Kernel

c

]
g e KERNEL SESSIONS x
00 |x @ (M PSR =T
9 [CoronaVirus2019.ipynb SHUT DOWN
N)| TERMINAL sEssioNs x

x

B

Shut Down All Kernels...

Change Kernel.

&R

Make sure 10 Shut down all running kernels

_images/logo_square.png

_images/logo_square1.png
Your,

13232 pr

Logo

_images/jl-stopserverandlogout.png
Z Jupyterhub Home Token test-user

My Server

\Please make sure to
Named Servers 1) Stop the single-user server

2) Log out
In addition to your default server, you may have additional server(s) with names. This allows you to have more than
one server running at the same time.

Server name URL Last activity Actions

Name your server | Add New Server

_images/jl_hub_control_panel.png
‘Flle Edit View Run Kemel Tabs Settings Help

New) . .
New Launcher o®L

Open from Path... - Last Modified
New View for File 2 hours ago
New Console for Activity 2 hours ago
Close Tab Xw

Close and Shutdown ~eQ

Close All Tabs,

Save File ®S

Save File As.. o®s

Save Al

O« B & O B O

Reload File from Disk
Revert File to Checkpoint
Rename File...

R | counond

Export Notebook As.

print... EL

Hub Control Panel

Log Out

_images/openhpc-logo-small.png
(=) openHPC

_images/openhpc-software-stack.png
Applications

Compilers, Libraries,
and development
tools

General Tools
and System
Services

Base OS

Shared Applications

Python2/3, R, RStudio, Julia,
Matlab, Mathematica, Haskell, ...

OpenMPI Intel MKL
GSL
(@]

WareWulf

User Applications
Physics, Math, Statistics, Chemistry,
Bioinformatics, Computer Science,
Business

NetCDF Gprof Conda, Spack
Adios TAU Likwid

_images/newkernelinstalled.png
[A] Notebook

e

Python3.7-
shared

B console

e

Python3.7-
shared

Other

Terminal

e

ArcGIS-shared

e

ArcGIS-shared

Julia-shared

Julia-shared

M
v

Markdown File

e

myPython27
myPython27

e

myPython27

=]

Show
Contextual Help

e

PSi_Chem-
shared

e

PSi_Chem-
shared

e

TensorFlow-
shared

e

TensorFlow-
shared

_images/ohpc_logo.png
(=) OpenHpPC

_images/thinlinc-client-disable-audio.png
ThinLinc Client Options

Options | Local Devims“ Scroen | Optimization | Security |

Export Local Resources
(OSound
(ODrives
(OPrinter
(Smart Card Readers

_images/thinlinc-client-pick-dm.png
Thinline Profile Chooser

_images/rack-diagram.png
1 GbE 48-port Switch (4x SPF+ 10GbE ports)

1 Mellanox 100Gbs 36 port EDR Infiniband Switch

#7 PowerEdge R740
2x 6-core Intel Xeon-G 6128 3. 4GHz CPUs, 192GB RAM, 1x480GB SAS SSDs striped + | 1x gpu nodes
1 NVIDIA Tesla V100 GPU

#7 PowerEdge R740
2x 6-core Intel Xeon-G 6128 3. 4GHz CPUs, 192GB RAM, 1x480GB SAS SSDs striped + | 1x gpu nodes
1 NVIDIA Tesla V100 GPU

#65 PowerEdge R840 ixlarge
4x 20-core Intel Xeon-G 6148 2.4GHz, 1.5TB RAM, 2x480GB SATA SSD. memory node

x
gpu-capable
nodes

x
gpu-capable
nodes

4x stdmem
nodes

4x stdmem
nodes

#32U NFS server with NVMe SSDs
PowerEdge R740XD

2x Intel Xeon-G 6126 2.6GHz CPU,

192GB RAM, storage

24x 1.6TB NVMe SSDs. server

fast scratch

NFS servers
for long-term
storage armay

#2 2U PowerEdge R740 NFS servers wi
2x 12-core Intel Xeon Gold 6136 3.0GHz CPUs, 192GB RAM, 5x300TB 15k SAS HDDs,

NFS servers
for long-term
storage armay

#2 2U PowerEdge R740 NFS servers w/
2x 12-core Intel Xeon Gold 6136 CPUs, 192GB RAM, 5x300TB 15k SAS HDDs,

#2 NSS-HAT (Dual NFS server) nss-ha?
1x 4U PowerVault MD3460 - RBOD w/ 60x 6TB HDDs long-term
storage array

#1 PowerEdge R740
2x 12-core Intel Xeon-G 6126 2.6GHz CPU,
192GB RAM, loginiz node
2x240GB SSDs mirrored,

1 NVIDIA Quadro P1000 GPU

_images/visit-302-3.png
ece
|3 Host_hpccofeedy |

File open

1 Path

/homeftest-user update your user name if necessary

Filter '+

[Use "current wor
Show dot files

g directory" by default

File grouping | Smart

Remove paths

(1 benchmarks

Open file as type: | Guess from file name/extension

Refresh

ctories s
(current directory) Sampling.nb
.. (g0 up 1 directory level) a
01 isit b e
no
g pocumerne remote5-7-0.pvsc
* run-jupyter.sh
g GoogleDrive run-scavangeq.slurm
R

run-slurmX11.sh
run.slurm
template-sapt.inp
template.slurm

oK

Set default open options...

Cancel

_images/visit-302-4.png
e e open
) Host | hpc.cofc.edu

(21 Path /opt/ohpc/pub/apps/visit/3.0.2/data

Filter '+

Use "current working directory" by default

File grouping = Smart Remove paths

Show dot files.
Directories Files
(current directory) [[meTpa2 S

multi_rect2d.silo
multi_rect3d.silo
multi_ucd3d.

. (go up 1 directory level)

poly3d.
rect2d.s
rectad.silo
tire.silo
ucd2d.silo
ucd3dsilo
ucd_lines2d.silo
ucd_lines3d.silo

Open file as type: = Guess from file name/extension

Refresh oK Cancel

_images/thinlinc-client-rdsession.png
template.slur
m

_images/visit-302-2.png
PO Newprfie | | peleteprotie Comyproia | o